
CHAPTER 1:

GETTING STARTED WITH

MULTIDRIZZLE
In this chapter. . .

 Starting Up... / 2
 First Session... / 3

 MultiDrizzle Syntax / 6
MultiDrizzle Parameters / 10

MultiDrizzle can process a set of ACS observations to generate a
distortion-free, cosmic-ray clean final image. The case presented in this
chapter only represents one fairly common situation for ACS users which
requires the use of most of MultiDrizzle's functionality.

This chapter delves right into the usage of MultiDrizzle with modest
explanations along the way. More detailed descriptions of the parameters
and syntax for advanced usage of MultiDrizzle can then be found in the
next chapter.

1.1Starting Up...
Operation of MultiDrizzle can be run from Python or from PyRAF,

along with STSDAS 3.2. MultiDrizzle has been designed as a Python
package with it's own interface, however, it can also be loaded into
STSDAS under PyRAF to enable use of the graphical EPAR interface that
comes with PyRAF. These packages have been designed to work together
in an almost seamless manner without requiring any manual setting of the
environment by the user. MultiDrizzle requires Python 2.3.3 (or later)
and numarray 1.2 (or later), and F2PY to be installed for operation with
the Python interfaces, in addition, STSDAS 3.2 and PyRAF 1.1 are
required for use of the GUI EPAR interface.

1 Running under PyRAF

This example will demonstrate the use of the MultiDrizzle while
running under PyRAF.

PYRAF can usually be started by simply running the command:
xyz> pyraf

Once PyRAF has started up, load the STSDAS, then dither packages:
--> stsdas

--> dither

At this point, the PyDrizzle code has been loaded into PyRAF for use.
MultiDrizzle has been incorporated into STSDAS not only as a Python
task in its own right, but also as an IRAF task with the usual parameter
driven interface. This IRAF interface will be used to process the first
dataset with MultiDrizzle.

The Python syntax can also be used from PyRAF, since PyRAF
provides full Python functionality as well as access to IRAF tasks. This
capability will be used for this example by demonstrating how to run
MultiDrizzle under PyRAF.

2 Running under Python
MultiDrizzle can also be used directly from Python without loading

IRAF, STSDAS or PyRAF. MultiDrizzle has been written as a Python
package and can be treated just like any other Python package. Therefore,
to use MultiDrizzle directly from Python, go to the directory with the data
and start up the Python, usually just with:

xyz> python

The use of MultiDrizzle using the Python interface requires that the
MultiDrizzle code be installed in a directory accessible by Python. If that
directory is not already included in the PYTHONPATH or default Python
system path, you can point to it using:

>>> sys.path.insert(1,'/directory/with/MultiDrizzle/code')

MultiDrizzle can then be loaded using the usual import mechanism in
Python:

>>> import multidrizzle

At this point, MultiDrizzle can be run on the calibrated images in the
local directory. Interactive help can be obtained for MultiDrizzle using the
built-in help mechanism:

>>> multidrizzle.help()

This will provide basic information on the methods available for use
and their syntax, including the method used for bringing up the Python
GUI interface for editing all the parameters.

1.2First Session...
All ACS data processed by the standard calibration pipeline has been

processed by MultiDrizzle to remove geometric distortion, and to remove
cosmic rays when combining associated images. Data taken using a
standard dither pattern, using CR-SPLIT on a long exposure or using
REPEAT-OBS, as specificed in the observing proposal will produce
associated data that will be automatically combined into a dither product
by MultiDrizzle. There will be times, though, when the results are not
sufficient for scientific analysis and the data requires reprocessing offline
using MultiDrizzle. This example illustrates how to take observations
associated by the HST calibration pipeline and reprocess them with
MultiDrizzle.

The test data
This example will be based on observations taken using a 2-point

Dither-Line pattern with CR-SPLIT=2 at each pointing using the WFC
detector of the ACS. The association table, seen in Table 1 , will serve as
the input to MultiDrizzle.

Association table for dithered observations

MEMNAME MEMTYPE MEMPRSNT
J8CW03A1Q EXP-CR1 yes
J8CW03A2Q EXP-CR1 yes
J8CW03FFQ EXP-CR2 yes
J8CW03FJQ EXP-CR2 yes
J8CW030X0 PROD-DTH no
J8CW03021 PROD-CR1 yes
J8CW03031 PROD-CR2 yes

This example relies on data taken as part of the ACS ERO program. The
association table, however, was manually created for this example to
represent how the images could have been associated if they would have
been taken as part of a formal Dither-pattern in the proposal.

It is assumed, though, that this association has already been processed

using CALACS. The products created by CALACS include both cosmic-
ray cleaned, calibrated products with 'crj.fits' suffixes and fully calibrated
input images with 'flt.fits' suffixes. This will result in having at least the
following files available in the current directory:

j8cw030x0_asn.fits

j8cw03021_crj.fits

j8cw03031_crj.fits
j8cw03a1q_flt.fits
j8cw03a2q_flt.fits
j8cw03ffq_flt.fits
j8cw03fjq_flt.fits

Reference files: IDCTAB and MDRIZTAB
These files will contain a reference to the distortion coefficients

reference file, IDCTAB, and MultiDrizzle parameter table, MDRIZTAB,
in their primary headers. The MultiDrizzle parameter table provides all the
settings used by the pipeline to run MultiDrizzle on any given ACS single
image or association. For these images, we find that IDCTAB and
MDRIZTAB is:

--> hedit j8cw03a1q_flt.fits[0] idctab,mdriztab .

j8cw03a1q_flt.fits[0],IDCTAB = jref$wfc_smov_idc.fits

j8cw03a1q_flt.fits[0],MDRIZTAB = jref$wfc_smov_mdz.fits

The environment variable jref should be defined (at least within
PyRAF) to point to the directory where the reference file is located.
Simply use:

--> show jref

to verify this variable points to the correct directory. If not, it can be set
using the standard IRAF syntax, where the directory shown in this
example would be replaced by the correct one for your local system. It
might, for example, be located at:

--> set jref = ’/data/cdbs7/jref’

Running MultiDrizzle
The Python syntax for running MultiDrizzle does not vary that much

from the PyRAF syntax. Unlike the PyRAF synt, it provides the user with
the ability to examine the inputs and computed parameters before

spending the majority of time actually doing the image combination.
MultiDrizzle creates an instance of a MultiDrizzle object which

contains all the methods necessary for editing the input parameters,
computing the image combination parameters, then performing the actual
cosmic-ray detection and image combination. All these functions get
wrapped into one call through the PyRAF interface, making for simpler
operation at the cost of the ability to inspect the object and its contents.

The processing starts with the creation of a MultiDrizzle object, which
for the sake of this example will simply be called 'md':

--> md = multidrizzle.MultiDrizzle('j8cw030x0_asn.fits',mdriztab=yes)

The specification of the 'mdriztab' parameter in the initialization
demonstrates how any of the input parameters whose values need to be
changed from the default value can be provided at the start. If many
parameters need to be edited, the Python GUI interface can now be started
using the method:

--> md.editpars()

At this point, the MultiDrizzle object has been provided all the input
parameter values necessary for the processing. The computations of the
parameters necessary for doing the image combination and cosmic-ray
detection now need to be performed, using the method:

--> md.build()

The computed values can now be examined using usual Python
introspection techniques, but the MultiDrizzle object itself contains
everything necessary for the processing. This can be started using:

--> md.run()

Session Summary
Despite all the explanations, very few commands are needed in order to

process images or sets of images using MultiDrizzle. The total session
described here simply boils down to:

xyz> cd /directory/with/data/

xyz> pyraf

--> stsdas

--> dither

--> multidrizzle j8cw030x0_asn.fits mdriztab=yes mode=h

The Python syntax does not require many more commnds:
--> import multidrizzle

--> md = multidrizzle.MultiDrizzle('j8cw030x0_asn.fits',mdriztab=yes)

--> md.editpars()

--> md.build()

--> md.run()

Both ways of running MultiDrizzle will produce the exact same output
products using the same input _flt.fits files.

1.3MultiDrizzle Syntax
Operation of MultiDrizzle can be performed using either (or both) an

IRAF parameter-based interface or a native Python command-line
interface. The IRAF provides the capability to use PyRAF’s graphical
EPAR editor to set all the parameters necessary for running MultiDrizzle,
then execute it all the way to completion in one step. This method makes it
easy to manage the input parameters through the graphical EPAR editor,
but prevents introspection into or modification of the values and products
computed by MultiDrizzle. This interface requires little explanation due to
it's reliance of IRAF syntax, and will not be described here.

The native Python interface, on the other hand, utilizes the native
Python syntax to provide the user with a simple method for running
MultiDrizzle. Separate methods control computing the necessary
parameters and the processing of the images using those parameters, while
a separate method provides access to limited online help.

Getting Help
MultiDrizzle has a built-in help method accessible:

--> import multidrizzle

--> multidrizzle.help()

This will provide the most basic set of commands outlined in this
example for running MultiDrizzle. Alternatively, a help method can
provide a reminder of the available methods for any MultiDrizzle object
already created using:

--> md = multidrizzle.MultiDrizzle('flt.fits')

--> md.help()

where 'md' is an instance of a MultiDrizzle object created from all the
'flt.fits' files in the current directory.

Instantiating MultiDrizzle
MultiDrizzle can be executed directly from Python using the syntax:

--> md = multidrizzle.MultiDrizzle(input='flt.fits', output=None,
editpars=False, **input_dict)

The parameter 'input_dict' serves as the means for the user to specify
any of the remaining parameters from Table 2 which should have non-
default values. Setting 'editpars' to True here will cause the Python GUI
parameter editor to start automatically, rather than using the separate
'editpars()' method later. This editor allows the user to examine all the

inputs for MultiDrizzle and set them as necessary to work best with the
input data.

Graphically Editing MultiDrizzle Parameters
MultiDrizzle relies on the Traits package from SciPy to manage the

many input parameters, and provide a GUI interface for editing their
values if desired. This GUI interface can be started using:

--> md.editpars()

The GUI interface will provide the ability to view and edit all input
parameters used by MultiDrizzle, all 60-some parameters. Each
parameter has been associated with a type of input, allowing MultiDrizzle
to verify the inputs to some degree, or limiting the input choices to only
valid values. The full set of parameters used by MultiDrizzle can be found
in Table 2, along with any starting default values. Simply closing this GUI
saves the values in the MultiDrizzle object for use.

Building Image Combination Parameters
Input parameters specify what the user wants to use for input, what

processing needs to be performed, and what form the output image(s)
should take. However, the actual processing gets performed using a
myriad of routines; most notably, a callable version of the classic IRAF
task 'drizzle'. The 'drizzle' task requires a fair number of inputs which
must be derived from the input images and specification of the output
frame. These values get computed using the method:

--> md.build()

This method passes the inputs to PyDrizzle to generate the necessary
inputs for 'drizzle', and most importantly, create the internal list used to
keep track of these values for all the MultiDrizzle processing steps.

Performing the Image Combination
The actual image processing can now begin using the method:

--> md.run(static=None, skysub=None, driz_separate=None, median=None,
blot=None, driz_cr=None, driz_combine=None)

This method allows the user one last chance to specify what processing
steps should be performed. If no parameters are specified, all processing
steps turned on during the instantiation of the MultiDrizzle object will be
performed. Generally, though, the user simply wants to run this method
without any specified parameters, such as:

--> md.run()

This represents the last step in processing images with MultiDrizzle,
with the final product being a registered, cosmic-ray cleaned, distortion-
free, photometrically uniform image.

Table 2:Parameters for MultiDrizzle

Parameter Default Value Description

input flt.fits Input files: filename, wildcard suffix, or @list

output Rootname for output drizzled products

mdriztab no Use table with multidrizzle parameters?

refimage Name of image to use as reference WCS

runfile multidrizzle.run File for logging the final drizzle commands

workinplace no Work on input files in place? (NOT RECOMMENDED)

coeffs header Use header-based distortion coefficients?

context yes Create context image during final drizzle?

clean no Remove temporary files?

group Specification of extension/group to process

bits 0 Integer mask bit values considered good

ra right ascension output frame center

dec declination output frame center

build yes Create multi-extension output file?

shiftfile Shiftfile name

Static Mask Creation

static yes Create static bad-pixel mask from the data?

staticfile Name of (optional) input static bad-pixel mask

static_sig 4 Sigma*rms below mode to clip for static mask

Sky Subtraction

skysub yes Perform sky subtraction?

skywidth 0.1 Interval width for sky statistics (in sigma)

skystat median Sky correction statistics parameter

skylower -50 Lower limit of usable data for sky (always in electrons)

skyupper 200 Upper limit of usable data for sky (always in electrons)

skyclip 5 Number of clipping iterations

skylsigma 4 Lower side clipping factor (in sigma)

skyusigma 4 Upper side clipping factor (in sigma)

skyuser KEYWORD indicating a sky subtraction value if done by user.

Create Separate Drizzled Images

driz_separate yes Drizzle onto separate output images?

driz_sep_outnx Size of separate output frame's X-axis (pixels)

driz_sep_outny Size of separate output frame's Y-axis (pixels)

driz_sep_kernel turbo Shape of kernel function

driz_sep_scale INDEF Absolute size of output pixels in arcsec/pixel

Parameter Default Value Description

driz_sep_pixfrac 1 Linear size of drop in input pixels

driz_sep_rot INDEF Orientation of final image's Y-axis w.r.t. North (in degrees)

driz_sep_fillval INDEF Value to be assigned to undefined output points

Create Median Image

median yes Create a median image?

median_newmasks yes Create new masks when doing the median?

combine_type median Type of combine operation

combine_nsigma 6 3 Significance for accepting minimum instead of median

combine_nlow 0 minmax: Number of low pixels to reject

combine_nhigh 1 minmax: Number of high pixels to reject

combine_lthresh INDEF Lower threshold for clipping input pixel values

combine_hthresh INDEF Upper threshold for clipping input pixel values

combine_grow 1 Radius (pixels) for neighbor rejection

Blot Median Image

blot yes Blot the median back to the input frame?

blot_interp poly5 Interpolant: nearest,linear,poly3,poly5,sinc

blot_sinscl 1 Scale for sinc interpolation kernel

Remove Cosmic-rays

driz_cr yes Perform CR rejection with deriv and driz_cr?

driz_cr_corr no Create CR cleaned _cor file and a _crmask file?

driz_cr_snr 3.0 2.5 driz_cr: SNR parameter

driz_cr_scale 1.2 0.7 driz_cr: scale parameter

driz_combine yes Perform final drizzle image combination?

Create Final Cleaned, Combined Product

final_outnx Size of FINAL output frame X-axis (pixels)

final_outny Size of FINAL output frame Y-axis (pixels)

final_kernel square Shape of kernel function

final_scale INDEF Absolute size of output pixels in arcsec/pixel

final_pixfrac 1 Linear size of drop in input pixels

final_rot 0 Orientation of final image's Y-axis w.r.t. North (in degrees)

final_fillval INDEF Value to be assigned to undefined output points

Override Instrument Specific Parameters

gain Detector gain

gnkeyword Detector gain keyword in header

rdnoise Detector read noise

rnkeyword Detector read noise keyword in header

exptime Exposure time

Parameter Default Value Description

expkeyword Exposure time keyword in header

crbit Bit value for CR identification in DQ array

1.4MultiDrizzle Parameters
MultiDrizzle processing starts with a list of input images, then applies a

number of operations on them to produce the final cosmic-ray cleaned
image; specifically:
1. Initialization
2. Bad pixel (static) mask creation
3. Sky subtraction
4. Drizzle onto separate, registered output images
5. Combine the separate drizzled images into a median
6. "blot", or transform back the median to each input image
7. Compare the median with original images to make cosmic ray masks
8. Drizzle all the images onto a final image, using the cosmic ray masks

It relies on a large number of parameters for specifying what steps get

performed and for controlling the algorithm used by each step. The
complete list of parameters and their default values are given in Table 2.
It is generally recommended to try running the script first with the default
parameters, which should allow the task to process nearly any set of
images for an initial review. The script can then be re-run, or restarted at a
particular step, with modified parameters if this is necessary.

1 Initialization Step
Parameters: input, output, mdriztab, refimage, runfile, workinplace,

coeffs, context, clean, group, bits, ra, dec, build, shiftfile

Processing: MultiDrizzle starts by determining what files are being
specified as inputs. These files then get converted as necessary to a usable
input format with appropriate units. This conversion includes making
copies of each input file, if 'workinplace' is set to 'False', so that the
original inputs SCI arrays are not altered and can be used for successive
runs. A set of drizzle parameter values needed to combine the images
into a final output image then get computed using PyDrizzle.

Input: This controls all inputs for the entire MultiDrizzle task, thus all
the parameters are processed as input. In addition, it requires access to:

� the image files specified in the 'input' parameter
� the MDRIZTAB reference table specified in the input image

headers

� the IDCTAB reference table specified in the input image
headers

� any specified reference image as named in the 'refimage'
parameter

Output: This step can result in the creation of several files, including:
� copies of each input image as a FITS image, if workinplace=yes

and/or input images are in GEIS format
� mask files and coeffs files created by PyDrizzle for use by

'drizzle'

Definitions: The definitions for each parameter are:

input: [format: string]
The name or names of the input files to be processed. It can be

provided in any of several forms; namely,
� filename of a single image
� filename of an association (ASN)table
� wild-card specification for files in directory
� comma-separated list of filenames
� '@file' filelist containing list of desired inputs filenames

The filelist needs to be provided as an ASCII text file containing a list
of filenames for all input images with one filename on each line of the file.
If inverse variance maps have also been created by the user and are to be
used (by specifying 'IVM' to the parameter 'final_wht_type' described
further below), then these are simply provided as a second column in the
filelist, with each IVM filename listed on the same line as a second entry,
after its corresponding exposure filename.

output: 'final' (default) [format: string]
The rootname for the output drizzled products. If an association file has

been given as input, this name will be used instead of the product name
specified in the ASN file. Similarly, if a single exposure is provided, this
rootname will be used for the output product instead of relying on input
rootname. If no value is provided when a filelist or wild-card specification
is given as input, then a rootname of 'final' will be used.

mdriztab: [format: string]
Specifies whether or not to use an MDRIZTAB reference table to

specify the remaining MultiDrizzle parameter settings. If 'True', the values
in the table will override the settings for the remainder of the parameters.

refimage: [format: string]
Optional "reference image" that can be provided, in which case

MultiDrizzle will create a final product with the same WCS. This
reference image should be a simple FITS file (single-group, no multiple

extensions), and should have been already drizzled so that all its distortion
has been removed, and its WCS is completely rectified.

runfile: “multidrizzle.run” (default) [format: string]
This log file will contain the IRAF CL commands necessary for

performing the final combination manually using the "drizzle" task
directly.

workinplace: False (default), True [format: Boolean]
This parameter specifies whether to perform all processing, including

skysubtraction and update of the DQ array, on the original input or not. If
set to 'True', then no copy of the input will be created for processing, and
the original input will be modified directly by MultiDrizzle.

coeffs: “header” (default) [format: string]
The source of the distortion coefficients gets specified using:

 header use the 'header' for determining what distortion

coefficients to use.

 cubic use 'cubic' solutions originally provided with 'drizzle'

 trauger use 'trauger' solutions originally provided with
'drizzle'

 None Do not apply any distortion correction to the images

Alternatively, an arbitrary distortion coefficients file can be specified
(including optionally the full pathname). This distortion file is used in
computing the WCS of the header.

NOTE: When the 'header' option has been selected, if the IDCTAB file
is not found on disk, then the task will exit for ACS data, while for
WFPC2 data it will default to the older "Trauger" model.

context: False (default), True [format: Boolean]
This parameter specifies whether or not to create a context image

during the final drizzle combination. The context image contains the
information on what image(s) contributed to each pixel encoded as a bit-
mask. More information on context images can be obtained from the ACS
Data Handbook online at:

http://www.stsci.edu/instruments/acs/

clean: False (default), True [format: Boolean]
The temporary files created by MultiDrizzle can be automatically

removed by setting this parameter to 'True'. The affected files would
include the coefficients files and static mask files created by PyDrizzle,
along with other intermediate files created by MultiDrizzle. It is often
useful to retain the intermediate files and examine them when first
learning how to run MultiDrizzle. But when running it routinely, these
files can be removed to save space.

group: [format: string]
A single FITS extension or group can be drizzled by setting this

parameter. If a section is provided, then only that chip will be drizzled
onto the output frame. Either a FITS extension number or GEIS group
number (such as '1'), or a FITS extension name (such as 'sci,1') can be
provided.

bits: 0 (default) [format: integer]
Integer sum of all the DQ bit values from the input image's DQ array

that should be considered 'good' when building the weighting mask. The
default value of 0 indicates that all non-zero DQ bits values should be
considered bad when computing the weighting for those pixels.

This value can be set by adding the integer values for all DQ bits that
should be considered good. For example, the default value for ACS data
combines the DQ values of 2 + 128 + 256 + 1024 + 2048 for a value of
3458. Thus, any ACS pixel which has only those DQ values would be
considered as good pixels by MultiDrizzle. This can also be used to reset
pixels to good if they had been flagged as cosmic rays during a previous
run of MultiDrizzle, by adding the value 4096 for ACS and WFPC2 data.

ra: [format: float]
Right ascension (in decimal degrees) of the center of the output image.

If this is not specified, the code will calculate the center automatically
based on the distribution of image dither positions.

dec: [format: float]
Declination (in decimal degrees) of the center of the output image. If

this is not specified, the code will calculate the center automatically based
on the distribution of image dither positions.

build: True (default) [format: Boolean]
MultiDrizzle would combine the separate 'drizzle' output files into a

single multi-extension format FITS file when this parameter gets set to
'True'. This combined output file will contain a SCI (science), a WHT
(weight), and a CTX (context) extension. If set to 'False', each extension
would remain as a separate simple FITS file on its own.

shiftfile: [format: string]
Name of optional input file containing the shifts to be applied to the

input images to improve the registration of the images. These shifts will be
added to those calculated automatically from the image headers. The
specification for this file can be found at:

http://stsdas.stsci.edu/pydrizzle/tutorial/reports.html

gain: [format: float]

Value used to override instrument specific default gain values. The
value is assumed to be in units of electrons/count. This parameter should
not be populated if the gainkeyword parameter is in use.

gainkeyword: [format: string]
Keyword used to specify a value to be used to override instrument

specific default gain values. The value is assumed to be in units of
electrons/count. This parameter should not be populated if the gain
parameter is in use.

rdnoise: [format: float]
Value used to override instrument specific default readnoise values.

The value is assumed to be in units of electrons. This parameter should
not be populated if the rnkeyword parameter is in use.

rnkeyword: [format: string]
Keyword used to specify a value to be used to override instrument

specific default readnoise values. The value is assumed to be in units of
electrons. This parameter should not be populated if the rdnoise parameter
is in use.

exptime: [format: float]
Value used to override default exposure time image header values. The

value is assumed to be in units of seconds. This parameter should not be
populated if the expkeyword parameter is in use.

expkeyword: [format: string]
Keyword used to specify a value to be used to override default

exposure time image header values. The value is assumed to be in units of
seconds. This parameter should not be populated if the exptime parameter
is in use.

crbit: [format: integer]
Integer used to override instrument specific cosmic ray bit values. This

value is used by Multidrizzle to update data quality arrays when cosmic
rays or other image defects are identified as "bad" in the DRIZ_CR step.
To prevent the image's data quality array from being updated set the crbit
value to 0.

2 Bad Pixel (Static) Mask Creation
Parameters: static, staticfile, static_sig

Processing: A static mask gets created from all input images to flag
pixels which are significantly below the mode. A separate static mask
gets generated for each input chip that comprises a single exposure. For

example, each ACS WFC image contains a separate image for each of 2
CCDs. A bad pixel gets defined as any pixel which falls more than
'static_sig' *RMS below the mode for a given chip or extension. Those
severely negative or low pixels can result from oversubtraction of bad
pixels in the dark image during calibration.

The final static mask for each chip contains all the bad pixels that meet
this criteria from all the input images. This static mask could also be
combined with a user supplied static mask specified in the 'staticfile'
parameter.

Input: Aside from the input parameters, this step requires opening each
input image to access the science (SCI) extensions for generating the static
masks.

Output: The generated static masks exist strictly in memory as
numarray objects that get applied during the single drizzle step. They also
get used to update the input mask files for the final image combination.

Definitions: The definitions for each parameter are:

static: True (default), False [format: Boolean]
This parameter specifies whether to create a static bad-pixel mask from

the data or not. This mask flags all pixels that deviate by more than
'static_sig' sigma below the image median.

staticfile: [format: string]
Name of (optional) input static bad-pixel mask. This mask will be

applied to all input images. If this is not specified, the code uses the bad
pixel information associated with the images (eg the "dq" arrays for ACS,
or the ".c1h" files for WFPC2) for the final drizzle combination.

static_sig: 4.0 (default) [format: float]
Number of sigma below the RMS to use as the clipping limit for

creating the static mask.

3 Sky Subtraction
Parameters: skysub, skywidth, skystat, skylower, skyupper, skyclip,

skylsigma, skyusigma, skyuser

Processing: The clipped mode gets computed for each input chip and
scaled to a reference plate scale as an estimate of the sky background. The
lowest scaled value for each chip of an observation (file) then gets re-
scaled to the chip's plate scale and subtracted as the sky value. The
primary header of each input image gets updated with this value.

In lieu of having MultiDrizzle computed the sky value, the user can
supply their own sky value as a keyword in the input file header. This
keyword name would then be given to MultiDrizzle in the 'skyuser'
parameter.

Input: Aside from the input parameters, this step requires opening each
input image to access the science (SCI) extensions for computing the sky
values.

Output: The input file Primary headers get updated with the computed
sky value, and each input image's SCI array (or copy, if 'workinplace' is
set to False), gets sky subtracted.

Definitions: The definitions for each parameter are:

skysub: True (default), False [format: boolean]
Turn on or off sky subtraction on the input data.

skywidth: 0.1 (default) [format: float]
Bin width, in sigma, used to sample the distribution of pixel flux values

in order to compute the sky background statistics.

skystat: "median” (default) [format: string]
Statistical method for determining the sky value from the image pixel

values. Valid options are:
� median
� mode
� mean

skylower: [format: float]
Lower limit of usable pixel values for computing the sky. This value
should be specified in units of electrons.

skyupper: [format: float]
Upper limit of usable pixel values for computing the sky. This value
should be specified in units of electrons.

skyclip: 5 (default) [format: integer]
Number of clipping iterations to use when computing the sky value.

skylsigma: 4.0 (default) [format: float]
Lower clipping limit, in sigma, used when computing the sky value.

Skyusigma: 4.0 (default) [format: float]
Upper clipping limit, in sigma, used when computing the sky value.

Skyuser: [format: string]

Name of header keyword which records the sky value already
subtracted from the image by the user.

4 Drizzling to Separate Outputs
Parameters: driz_separate, driz_sep_outnx, driz_sep_outny,

driz_sep_kernel, driz_sep_scale, driz_sep_pixfrac, driz_sep_rot,
driz_sep_fillval

Processing: Each input image gets drizzled onto separate copies of the
output frame. These copies when stacked would correspond to the final
combined product. As separate image, though, they allow for treatment of
each input image separately in the undistorted, final WCS system.

These images provide the information necessary for refining the image
registration for the input image.

Input: Aside from the input parameters, this step requires:
� valid input images with SCI extensions
� valid distortion coefficients tables
� any optional secondary distortion correction images
� numarray object (in memory) for static mask

Output: This step produces:
� singly drizzled science image (simple FITS format)
� singly drizzled weight images (simple FITS format)

These images all have the same WCS based on the original input
parameters and those provided for this step; specifically, output shape,
pixel size, and orientation, if any have been specified at all.

Definitions: The definitions for each parameter are:

driz_separate: True(default), False [format: boolean]
This parameter specifies whether or not to drizzle each input image

onto separate output images. The separate output images will all have the
same WCS as the final combined output frame. These images are used to
create the median image, needed for the cosmic ray rejection step further
on.

driz_sep_outnx: [format: float]
Size of the X axis of the output images, in pixels, which each input will

be drizzled onto. If no value is specified, it will use the smallest size that
can accommodate the full image.

driz_sep_outny: [format: float]

Size of the Y axis of the output images, in pixels, which each input will
be drizzled onto. If no value is specified, it will use the smallest size that
can accommodate the full image.

driz_sep_kernel:"turbo" (default) [format: string]
For the initial separate drizzling operation only, this specifies the form

of the kernel function used to distribute flux onto the separate output
images. The options are currently:

square original classic drizzling kernel

point the kernel is a point so each input pixelcan only contribute to
the single pixel which is closest to the output position. It is
equivalent to the limit pixfrac -> 0. It is very fast.

gaussian the kernel is a circular gaussian with FWHM equal to the value
of pixfrac, measured in input pixels.

turbo this is similar to kernel="square" but the box is always the
same shape and size on the output grid and always aligned
with the X and Y axes. This results in a significant speed
increase in some cases.

tophat the kernel is a circular "top hat" shape of width pixfrac. In
effect only output pixels within pixfrac/2 of the output position
are affected.

lanczos3 a Lanczos style kernel extending 3 pixels from the center. The
Lanczos kernel is a damped, bounded form of the "sinc”
interpolator and is very effective for resampling single images
when scale=pixfrac=1. It leads to less resolution loss than the
other kernels, and also less correlated noise in outputs. It is
however much slower. It should never be used for pixfrac !=
1.0 and is not recommended for scale != 1.0.

The default for this step is "turbo" since it is much faster than "square",
and it is quite satisfactory for the purposes of generating the median
image. More information about the different kernels can be found in the
help for the task 'drizzle'.

driz_sep_scale: None (default) [format: float]
Linear size of output pixels in arcseconds/pixel for each separate

drizzled image (to be used in creating the median for cosmic ray
rejection). The default value of INDEF specifies that the undistorted pixel
scale for the first input image, as computed by PyDrizzle, will be used as
the pixel scale for all the output images.

driz_sep_pixfrac: 1 (default) [format: float]
Fraction by which input pixels are "shrunk" before being drizzled onto

the output image grid, given as a real number between 0 and 1. This
specifies the size of the footprint, or "dropsize", of a pixel in units of the
input pixel size. If pixfrac is set to less than 0.001, the kernel get reset to
'point' for more efficient processing. For the step of drizzling each input
image onto a separate output image, the default value of 1 is best in order

to ensure that each output drizzled image is fully populated with pixels
from the input image. For more information, see the help for the task
'drizzle'.

driz_sep_rot: None (default) [format: float]
Position Angle of output image's Y-axis relative to North. A value of

0.0 would orient the final output image with North up. The default of
INDEF specifies that the images will not be rotated, but will instead be
drizzled in the default orientation for the camera, with the x and y axes of
the drizzled image corresponding approximately to the detector axes. This
conserves disk space, since these single drizzled images are only used in
the intermediate step of creating a median image.

driz_sep_fillval: “INDEF” (default) [format: string]
Value to be assigned to output pixels that have zero weight or did not

receive flux from any input pixels during drizzling. This parameter
corresponds to the 'fillval' parameter of the 'drizzle' task. If the default of
'INDEF' is used and if the weight in both the input and output images for a
given pixel are zero, then the output pixel will be set to the value it would
have had if the input had a non-zero weight. Otherwise, if a numerical
value is provided (eg. 0), then these pixels will be set to that value.

5 Median Image Creation
Parameters: median, median_newmasks, combine_type,

combine_nsigma, combine_nlow, combine_nhigh, combine_lthresh,
combine_hthresh, combine_grow

Processing: The combined median image gets created during this step
by combining the singly drizzled science images. This median
combination gets performed section-by-section from the input single
drizzle images. Each section corresponds to a contiguous set of lines from
each image taking up no more than 1Mb in memory, so that combining 10
input images would only require 10Mb for these sections.

Input: Aside from the input parameters, this step requires access to the
single drizzled images on disk.

Output: The final median image serves as the only output from this
step.

Definitions: The definitions for each parameter are:

median: True (default), False [format: boolean]
The user can specify whether or npt to create a median image with this

parameter. This median image will be used as the comparison 'truth' image
in the cosmic ray rejection step.

median_newmasks: True (default), False [format: boolean]
The user can specify whether or not to create new mask files when

creating the median image. These masks are generated from the weight
files produced previously by the "driz_separate" step, and would contain
all the bad pixel information. These pixels will be excluded when
calculating the median. Generally this step should be set to "yes", unless it
is desired to include bad pixels in generating the median.

combine_type: "minmed" (default) [format: string]
This parameter allows the user to choose what method should be used

to create the median image. Valid options are:
� average
� median
� sum
� minmed

The 'average', 'median', and 'sum' options set the mode of operation for
using 'numcombine', a numarray method for median-combining arrays, to
create the median image. The "minmed" option will produce an image that
is generally the same as the median, except in cases where the median is
significantly higher than the minimum good pixel value, in which case it
will choose the minimum. The sigma thresholds for this decision are
provided by the "combine_nsigma" parameter.

combine_nsigma: "4 3"(default) [format: string]
Sigmas used for accepting minimum values instead of median values

when using the 'minmed' combination method. If two values are specified,
then the first value will be used in the initial choice between median and
minimum, while the second value will be used in the "growing" step to
reject additional pixels around those identified in the first step. If only one
value is specified, then it is used in both steps.

combine_nlow: [format: integer]
When using a 'minmax' rejection method, this parameter sets the

number of low value pixels to reject.

combine_nhigh: [format: integer]
When using a 'minmax' rejection method, this parameters sets the

number of high value pixels to reject.

combine_lthresh: None (default) [format: float]
Sets the lower threshold for clipping input pixel values during image

combination. This value gets passed directly to 'imcombine' for use in
creating the median image. If None, no thresholds are used at all.

combine_hthresh: None (default) [format: float]

Sets the upper threshold for clipping input pixel values during image
combination. This value gets passed directly to 'imcombine' for use
in creating the median image. If None, no thresholds are used at all.

combine_grow: 1 (default) [format: float]
Width in pixels for additional pixels to be rejected in an image with a

rejected pixel from one of the rejection algorithms. This parameter is used
to set the 'grow' parameter in 'imcombine' for use in creating the median
image.

6 Blotting Median Image
Parameters: blot, blot_interp, blot_sinscl

Processing: The median image has the distortion model applied to it to
re-create 'cleaned' versions of the distorted input images; otherwise known
as 'blotting' the median image. These blotted image can then be directly
compared to the original distorted input images for detection of bad-
pixels, hot pixels, and cosmic-rays for removal.

Input: Aside from the input parameters, this step only requires opening
the single median image created from all the inputs images.

Output: A distorted version of the median image corresponding to each
input 'chip' (extension) gets written out as output from this step as separate
simple FITS images.

Definitions: The definitions for each parameter are:

blot: True (default), False [format: boolean]
Perform the blot operation on the median image? The output will be

median smoothed images which match each input chip's image, and are
used in the cosmic ray rejection step.

blot_interp: "poly5" (default) [format: string]
Type of interpolation to use when blotting drizzled images back to their
original WCS. Valid options are:

nearest Nearest neighbor

linear Bilinear interpolation in x and y

poly3 Third order interior polynomial in x and y

poly5 Fifth order interior polynomial in x and y

sinc Sinc interpolation; accurate but slow

The poly5 interpolation method has been chosen as the default because
it is relatively fast and accurate. If 'sinc' interpolation has been selected,
then it will use the value of the parameter 'blot_sinscl' to specify the size
of the sinc interpolation kernel.

blot_sinscl: 1.0 (default) [format: float]
Size of the sinc interpolation kernel in pixels.

7 Cosmic-ray detection and removal
Parameters: driz_cr, driz_cr_corr, driz_cr_snr, driz_cr_scale

Processing: The blotted median images get compared to the original
input images to detect any spurious pixels in each input. Those spurious
pixels then get flagged as 'bad' in the mask files that get used as input for
the final combination so that they do not show up in the final product.

Input: Aside from the input parameters, this step requires:
� the blotted median images, and
� the mask files.

Output: The identified bad pixels get flagged by updating the input
mask files. Optionally, copies of the original images with the bad pixels
removed can be created through the use of the 'driz_cr_corr' parameter.

Definitions: The definitions for each parameter are:

driz_cr: True (default), False [format: boolean]
Perform cosmic-ray detection? If set to "yes", it will detect cosmic-rays

and create cosmic-ray masks using the algorithms from 'deriv' and
'driz_cr'.

driz_cr_corr: False (default), True [format: boolean]
Create a cosmic-ray cleaned input image? The cosmic-ray cleaned _cor

image will be generated directly from the input image, and a
corresponding _crmask file will be written to document the pixels detected
as affected by cosmic-rays.

driz_cr_snr: "3.5 3.0" (default) [format: string]
These values specify the signal-to-noise ratios for the 'driz_cr' task to

use in detecting cosmic rays. This parameter value gets passed directly to
'driz_cr'; see the help file for 'driz_cr' for further discussion of this
parameter.

driz_cr_scale: "1.2 0.7" (default) [format: string]

Scaling factor applied to the derivative in 'driz_cr' when detecting
cosmic-rays. This parameter gets passed directly to 'driz_cr'; see the help
file for 'driz_cr' for further discussion of this parameter.

8 Final image combination
Parameters: driz_combine, final_wht_type, final_outnx, final_outny,

final_kernel, final_scale, final_pixfrac, final_rot, final_fillval

Processing: This step performs the final image combination of the
original input images (or their copies) using the updated mask files to
remove any cosmic-rays. The output frame, just like the single drizzle
step, can be redefined here using some parameters for this step, otherwise
it will use the default computed to (ideally) include all the input pixels
from all the input images after registering them according to their header's
WCS information.

Input: Aside from the input parameters, this step requires:
� all input images SCI arrays
� In addition, there are many other cases such as this where

enhanced error messages or error trapping can take place, and
we feel that all these should be implemented in a coherent,
consistent manner for the entire task.
updated mask files

� all distortion coefficients files

Output: The final product of MultiDrizzle is a registered, cosmic-ray

cleaned, distortion-free, photometrically flat science image with associated
weight and context images. By default, these will be written out as a
single multi-extension FITS file, but the user could simply have them
written out as separate simple FITS images.

Definitions: The definitions for each parameter are:

 driz_combine: True (default), False [format: boolean]
This parameter specifies whether or not to perform the final drizzle

image combination. This applies the generated cosmic-ray masks to the
input images and create a final, cleaned, distortion-corrected product.

final_wht_type: EXP (default) [format: string]
Specify the type of weighting image to combine with the bad pixel

mask for the final drizzle step. The options are:
� EXP
� IVM
� ERR

The default of 'EXP' indicates that the images will be weighted
according to their exposure time, which is the standard behavior for

drizzle. This weighting is a good approximation in the regime where the
noise is dominated by photon counts from the sources, while contributions
from sky background, read-noise and dark current are negligible. This
option is provided as the default since it produces reliable weighting for all
types of data, including older instruments (eg., WFPC2) where more
sophisticated options may not be available.

Specifying 'ERR' is an alternative for ACS and STIS data, in which
case the final drizzled images will be weighted according to the inverse
variance of each pixel in the input exposure files, calculated from the error
array data extension that is in each calibrated input exposure file. This
array encapsulates all the noise sources in each exposure, including read-
noise, dark current and sky background, as well as Poisson noise from the
sources themselves, and this also includes a dependence upon exposure
time. For WFPC2, the ERR array is not produced during calibration,
therefore this option is not available. But for ACS and STIS datasets this
option is generally recommended to be the most accurate type of
weighting for producing the final drizzled image.

Finally, 'IVM' can be specified, in which case the user supplies their
own inverse-variance weighting map. This may be necessary for specific
purposes, for example to create a drizzled weight file for software such as
Sextractor, which expects a weight image that contains all the background
noise sources (sky level, read-noise, dark current, etc) but not the Poisson
noise from the objects themselves. The user creates the inverse variance
images and then specifies their names using the 'input' parameter for
MultiDrizzle to specify an '@file'. This would be a single ASCII file
containing the list of input calibrated exposure filenames (one per line),
with a second column containing the name of the IVM file corresponding
to each calibrated exposure. Each IVM file must have the same file format
as the input file, and if given as multi-extension FITS files (for example,
ACS or STIS data) then the IVM extension must have the EXTNAME of
'IVM'.

final_outnx: [format: float]
Size of the X axis of the final drizzled image (in pixels). If no value is

specified, it will use the smallest size that can accommodate the full
image.

final_outny: [format: float]
Size of the Y axis of the final drizzled image (in pixels). If no value is

specified, it will use the smallest size that can accommodate the full
image.

final_kernel: "square" (default) [format: string]
Shape of the kernel used by 'drizzle' in the final image combination.

The supported choices are:
� square
� point
� gaussian

� turbo
� tophat
� lanczos3

See the expanded descriptions of these kernels in the 'Drizzling to
Separate Outputs' section.

final_scale: None (default) [format: float]
Linear size of the output pixels in arcseconds/pixel for the final

combined product. The default value of INDEF specifies that the
undistorted pixel scale for the first input image, as computed by
PyDrizzle, will be used as the pixel scale for the final output image.

final_pixfrac: 1. (default) [format: float]
Fraction by which input pixels are "shrunk" before being drizzled onto

the output image grid, given as a real number between 0 and 1. This
specifies the size of the footprint, or "dropsize", of a pixel in units of the
input pixel size. If pixfrac is set to less than 0.001, the kernel is reset to
'point' for more efficient processing. If more than a few images are being
combined, values smaller than 1 (eg 0.7 or 0.8) can be specified, which
result in a slightly sharper output image. For more information, read the
help for the task 'drizzle'.

final_rot: 0. (default) [format: float]
Position Angle of output image's Y-axis relative to North. The default

of 0.0 would orient the final output image with North up. A value of
INDEF would specify that the images will not be rotated, but will instead
be drizzled in the default orientation for the camera, with the x and y axes
of the drizzled image corresponding approximately to the detector axes.

final_fillval: "INDEF" (default) [format: string]
Value to be assigned to output pixels that have zero weight or did not

receive flux from any input pixels during drizzling. This parameter
corresponds to the 'fillval' parameter of the 'drizzle' task. If the default of
'INDEF' is used and if the weight in both the input and output images for a
given pixel are zero, then the output pixel will be set to the value it would
have had if the input had a non-zero weight. Otherwise, if a numerical
value is provided (eg. 0), then these pixels will be set to that value.

