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Purpose
This is intended to show how Python can be used to interactively analyze data much in the same way
IDLTM or MatlabTM can. The approach taken is to illustrate as quickly as possible how one can perform
common data analysis tasks. This is not a tutorial on how to program in Python (many good tutorials are
available�targeting various levels of programming experience�, either as books or on-line material; many
are free). As with IDL, one can write programs and applications also rather than just execute interactive
commands. (Appendix A lists useful books, tutorials and on-line resources for learning the Python language
itself as well as the speci�c modules addressed here.) Nevertheless, the focus will initially be almost entirely
on interactive use. Later, as use becomes more sophisticated, more attention will be given to elements that
are useful in writing scripts or applications (which themselves may be used as interactive commands).

The examples shown are mostly drawn from astronomy. Most of them should be understandable to those
in other �elds. There are some sections that should be skipped by those not interested in astronomical data
analysis. These sections are noted in the text. Since all the data used by the examples is in the standard
astronomical data format called FITS, it is necessary to use the PyFITS module to access these data to
follow along.

This document is not intended as a reference, but it is unconventional in that it does serve as a light
reference in that in many sections lists of functions or methods are given. The reasons are twofold: �rst,
to give a quick overview of what capabilities are available. Generally these tables are limited to one line
descriptions; generally enough to give a good idea of what can be done, but not necessarily enough information
to use it (though often it is). Secondly, since the brief descriptions often su�cient to use the functions without
resort to more detailed documentation, thus reducing the need to continually refer to other documentation
if the user is using this document as a primary tool for learning how to use Python.

For those with IDL experience, Appendix B compares Python and IDL to aid those trying to decide
whether they should use Python; and Appendix C provides a mapping between IDL and Python array capa-
bilities to help IDL users �nd corresponding ways to carry out the same actions. Appendix D compares IDL
plotting with matplotlib. Appendix E has some brief comments about editors and IDEs (Integrated Devel-
opment Environments). Appendix F discusses the current situation regarding the di�erent array packages
available within Python.

Prerequisites
Previous experience with Python of course is helpful, but is not assumed. Likewise, previous experience in
using an array manipulation language such as IDL or matlab is helpful, but not required. Some familiarity
with programming of some sort is necessary.

Practicalities
This tutorial series assumes that Python (v2.4 or later), numpy (v1.0 or later), matplotlib (v0.87.7 or later),
py�ts (v1.1 or later), numdisplay (v1.1 or later), and ipython (v0.6.12 or later) are installed (Google to �nd
the downloads if not already installed). All these modules will run on all standard Unix, Linux, Mac OS X
and MS Windows platforms (PyRAF is not supported on MS Windows since IRAF does not run on that
platform). The initial image display examples assume that DS9 (or ximtool) is installed. A few examples
require modules from scipy.stsci. These modules are also included with the stsci_python distribution. The
tutorial web page has links to all of the software.

At STScI these are all available on Science cluster machines and the following describes how to set up
your environment to access Python and these modules.

For the moment the PyFITS functions are available only on IRAFDEV. To make this version available
either place IRAFDEV in your .envrc �le or type irafdev at the shell level. Eventually this will be available
for IRAFX as well.

If you have a Mac, and do not have all these items installed, follow the instructions on this web page:
http://pyraf.stsci.edu/pyssg/macosx.html. At the very least you will need to do an update to get the latest
PyFITS.
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1 Reading and manipulating image data
1.1 Example session to read and display an image from a FITS �le
The following illustrates how one can get data from a simple FITS �le and display the data to DS9 or similar
image display program. It presumes one has already started the image display program before starting
Python. A short example of an interactive Python session is shown below (just the input commands, not
what is printed out in return). The individual steps will be explained in detail in following sections.

> > > import pyfits # load FITS module
> > > from numpy import * # load array module
> > > pyfits.info('pix.fits') # show info about file
> > > im = pyfits.getdata('pix.fits') # read image data from file
> > > import numdisplay # load image display module
> > > numdisplay.display(im) # display to DS9
> > > numdisplay.display(im,z1=0,z2=300) # repeat with new cuts
> > > fim = 1.*im # make float array
> > > bigvals = where(fim > 10) # find pixels above threshold

# log scale above threshold
> > > fim[bigvals] = 10*log(fim[bigvals]-10) + 10
> > > numdisplay.display(fim)
> > > hdr = pyfits.getheader('pix.fits')
> > > print hdr
> > > date = hdr['date'] # print header keyword value
> > > date
> > > hdr['date'] = '4th of July' # modify value
> > > hdr.update('flatfile','flat17.fits') # add new keyword flatfile
> > > pyfits.writeto('newfile.fits',fim,hdr) # create new fits file
> > > pyfits.append('existingfile.fits',fim, hdr)
> > > pyfits.update('existingfile.fits',fim, hdr, ext=3)

1.2 Starting the Python interpreter
The �rst step is to start the Python interpreter. There are several variants one can use. The plain Python
interpreter is standard with every Python installation, but lacks many features that you will �nd in PyRAF
or IPython. We recommend that you use one of those as an interactive environment (ultimately PyRAF
will use IPython itself). For basic use they all pretty much do the same thing. IPython special features
will be covered later. The examples will show all typed lines starting the line with the standard prompt
of the Python interpreter (> > >) unless it is IPython (numbered prompt) or PyRAF (prompt: -->) being
discussed. (Note that comments begin with #.) At the shell command line you type one of the following

python # starts standard Python interpreter
ipython # starts ipython (enhanced interactive features)
pyraf # starts PyRAF

1.3 Loading modules
After starting an interpreter, we need to load the necessary libraries. One can do this explicitly, as in this
example, or do it within a start-up �le. For now we'll do it explicitly. There is more than one way to load a
library; each has its advantages. The �rst is the most common found in scripts:

> > > import pyfits

This loads the FITS I/O module. When modules or packages are loaded this way, all the items they contain
(functions, variables, etc.) are in the �namespace� of the module and to use or access them, one must preface
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the item with the module name and a period, e.g., pyfits.getdata() to call the py�ts module getdata
function.

For convenience, particularly in interactive sessions, it is possible to import the module's contents directly
into the working namespace so prefacing the functions with the name of the module is not necessary. The
following shows how to import the array module directly into the namespace:

> > > from numpy import *

There are other variants on importing that will be mentioned later.

1.4 Reading data from FITS �les
One can see what a FITS �le contains by typing:

> > > pyfits.info('pix.fits')
Filename: pix.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 71 (512, 512) Int16

The simplest way to access FITS �les is to use the function getdata.

> > > im = pyfits.getdata('pix.fits')

If the �ts �le contains multiple extensions, this function will default to reading the data part of the primary
Header Data Unit, if it has data, and if not, the data from the �rst extension. What is returned is, in this
case, an image array (how tables are handled will be described in the next tutorial).

1.5 Displaying images
Much like IDL and Matlab, many things can be done with the array. For example, it is easy to �nd out
information about the array: im.shape tells you about the dimensions of this array. The image can be
displayed on a standard image display program such as DS9 (ximtool and SAOIMAGE will work too, so
long as an 8-bit display is supported) using numdisplay (the following examples presume that the image
display program has already been started):

> > > import numdisplay
> > > numdisplay.display(im)

As one would expect, one can adjust the image cuts:

> > > numdisplay.display(im,z1=0,z2=300)

Note that Python functions accept both positional style arguments or keyword arguments.
There are other ways to display images that will be covered in subsequent tutorials.

1.6 Array expressions
The next operations show that applying simple operations to the whole or part of arrays is possible.

> > > fim = im*1.

creates a �oating point version of the image.

> > > bigvals = where(fim > 10)

returns arrays indicating where in the fim array the values are larger than 10 (exactly what is being returned
is glossed over for the moment). This information can be used to index the corresponding values in the array
to use only those values for manipulation or modi�cation as the following expression does:
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> > > fim[bigvals] = 10*log(fim[bigvals]-10) + 10

This replaces all of the values that are larger than 10 in the array with a scaled log value added to 10

> > > numdisplay.display(fim)

The details on how to manipulate arrays will be the primary focus of this tutorial.

1.7 FITS headers
Looking at information in the FITS header is easy. To get the header one can use pyfits.getheader:

> > > hdr = pyfits.getheader('pix.fits')

Both header and data can be obtained at the same time using getdata with an optional header keyword
argument (the ability to assign to two variables at once will be explained a bit more in a later tutorial; it's
particularly useful when functions return more than one thing):

> > > data, hdr = pyfits.getdata('pix.fits', header=True)

To print out the whole header:

> > > print hdr
SIMPLE = T / Fits standard
BITPIX = 16 / Bits per pixel
NAXIS = 2 / Number of axes
NAXIS1 = 512 / Axis length
NAXIS2 = 512 / Axis length
EXTEND = F / File may contain extensions

[...]

CCDPROC = 'Apr 22 14:11 CCD processing done'
AIRMASS = 1.08015632629395 / AIRMASS
HISTORY 'KPNO-IRAF'
HISTORY '24-04-87'
HISTORY 'KPNO-IRAF' /
HISTORY '08-04-92' /

To get the value of a particular keyword:

> > > date = hdr['date']
> > > date
'2004-06-05T15:33:51'

To change an existing keyword:

> > > hdr['date'] = '4th of July'

To change an existing keyword or add it if it doesn't exist:

> > > hdr.update('flatfile','flat17.fits')

Where flatfile is the keyword name and flat17.fits is its value.
Special methods are available to add history, comment or blank cards (see Tutorial 3 for examples).

When
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1.8 Writing data to FITS �les
> > > pyfits.writeto('newfile.fits',fim,hdr) # User supplied header

or

> > > pyfits.append('existingfile.fits',fim, hdr)

or

> > > pyfits.update('existingfile.fits',fim, hdr, ext=3)

There are alternative ways of accessing FITS �les that will be explained in a later tutorial that allow more
control over how �les are written and updated.

1.9 Some Python basics
It's time to gain some understanding of what is going on when using Python tools to do data analysis this
way. Those familiar with IDL or matlab will see much similarity in the approach used. It may seem a bit
more alien to those used to running programs or tasks in IRAF or similar systems.

1.9.1 Memory vs. data �les
First it is important to understand that the results of what one does usually reside in memory rather than
in a data �le. With IRAF, most tasks that process data produce a new or updated data �le (if the result is
a small number of values it may appear in the printout or as a task parameter). In IDL, matlab, or Python,
one usually must explicitly write the results from memory to a data �le. So results are volatile in the sense
that they will be lost if the session is ended. The advantage of doing things this way is that applying a
sequence of many operations to the data does not require vast amount of I/O (and the consequent cluttering
of directories). The disadvantage is that very large data sets, where the size approaches the memory available,
tend to need special handling (these situations will be addressed in a subsequent tutorial).

1.9.2 Python variables
Python is what is classi�ed as a dynamically typed language (as is IDL). It is not necessary to specify what
kind of value a variable is permitted to hold in advance. It holds whatever you want it to hold. To illustrate:

> > > value = 3
> > > print value
3
> > > value = �hello�

Here we see the integer value of 3 assigned to the variable value. Then the string 'hello' is assigned to the
same variable. To Python that is just �ne. You are permitted to create new variables on the �y and assign
whatever you please to them (and change them later). Python provides many tools (other than just print)
to �nd out what kind of value the variable contains. Variables can contain simple types such as integers,
�oats, and strings, or much more complex objects such as arrays. Variable names contain letters, digits and
'_'s and cannot begin with a digit. Variable names are case sensitive: name, Name, and NAME are all di�erent
variables.

Another important aspect to understand about Python variables is that they don't actually contain
values, they refer to them (i.e., point), unlike IDL or matlab. So where one does:

> > > x = im # the image we read in

creates a new variable x but not a copy of the image. If one were to change a part of the image:

> > > im[5,5] = -999
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The very same change would appear in the image referred to by x. This point can be confusing to some and
everyone not used to this style will eventually stub their toes on it a few times. Generally speaking, when
you want to copy data one must explicitly ask for a copy by some means. For example:

> > > x = im.copy()

(The odd style of this�for those not used to object oriented languages�will be explained next)

1.9.3 How does object oriented programming a�ect you?
While Python does support object-oriented programming very well, it does not require it to be used to write
scripts or programs at all (indeed, there are many kinds of problems best not approached that way). It is
quite simple to write Python scripts and programs without having to use object-oriented techniques (unlike
Java and some other languages). In other words, just because Python supports object-oriented programming
doesn't mean you have to use it that way or even that you should. That's good because the mere mention
of object-oriented programming will give many astronomers the heebie-jeebies. That being said, there is a
certain aspect of object oriented programming all users need to know about. While you are not required
to write object-oriented programs, you will be required to use objects. Many Python libraries were written
with the use of certain core objects in mind. Once you learn some simple rules, using these objects is quite
simple. It's writing code that de�nes new kinds of objects that is what can be di�cult to understand for
newbies; not so for using them.

If one is familiar with structures (e.g., from C or IDL) one can think of objects as structures with bundled
functions. Instead of functions, they are called methods. These methods in e�ect de�ne what things are
proper to do with the structure. For those not familiar with structures, they are essentially sets of variables
that belong to one entity. Typically these variables can contain references to yet other structures (or for
objects, other objects). An example illustrates much better than abstract descriptions.

> > > f = open('myfile.txt')

This opens a �le and returns a �le object. The object has attributes, things that describe it, and it has
methods, things you can do with it. File objects have few attributes but several methods. Examples of
attributes are:

> > > f.name
'myfile.txt'
> > > f.mode
'r'

These are the name of the �le associated with the �le object and the read/write mode it was opened in.
Note that attributes are identi�ed by appending the name of the attribute to the object with a period. So
one always uses .name for the �le object's name. Here it is appended to the speci�c �le object one wants
the name for, that is f. If I had a di�erent �le object bigfile, then the name of that would be represented
by bigfile.name.

Methods essentially work the same way except they are used with typical function syntax. One of a �le
object's methods is readline, which reads the next line of the �le and returns it as a string. That is:

> > > f.readline()
'a line from the text file'

In this case, no arguments are needed for the method. The seek method is called with an argument to
move the �le pointer to a new place in the �le. It doesn't return anything but instead performs an action to
change the state of �le object:

f.seek(1024) # move 1024 bytes from the file beginning.

Note the di�erence in style from the usual functional programming. A corresponding kind of call for seeking
a �le would be seek(f,1024). Methods are implicitly supposed to work for the object they belong to. The
method style of functions also means that it is possible to use the same method names for very di�erent
objects (particularly nice if they do the same basic action, like close). While the use of methods looks odd
to those that haven't seen them before, they are pretty easy to get used to.
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1.9.4 Errors and dealing with them
People make mistakes and so will you. Generally when mistakes are made with Python that the program
did not expect to handle, an �Exception� is �raised�. This essentially means the program has crashed and
returned to the interpreter (it is not considered normal for a Python program to segfault or otherwise crash
the Python interpreter; it can happen with bugs in C extensions�especially ones you may write�but it is
very unusual for it to happen in standard Python libraries or Python code). When this happens you will see
what is called a �traceback� which usually shows where in all the levels of the program, it failed. While this
can be lengthy and alarming looking, there is no need to get frightened. The most immediate cause of the
failure will be displayed at the bottom (depending on the code and it's checking of user input, the original
cause may or may not be as apparent). Unless you are interested in the programming details, it's usually
safe to ignore the rest. To see your �rst traceback, let's intentionally make an error:

> > > f = pyfits.open(3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "/usr/stsci/pyssg/py/pyfits.py", line 3483, in open
ffo = _File(name, mode=mode, memmap=memmap)

File "/usr/stsci/pyssg/py/pyfits.py", line 2962, in __init__
self.__file = __builtin__.open(name, python_mode[mode])

TypeError: coercing to Unicode: need string or buffer, int found

The message indicates that a string (or suitable alternative) was expected and that an integer was found
instead. The open function expects a �lename, hence the exception.

The great majority of exceptions you will see will be due to usage errors. Nevertheless, some may be
due to errors in the libraries or applications though, and should be reported if encountered (after ruling out
usage errors).

Unlike IDL, exceptions do not leave you at the level of the program that caused them. Enabling that
behavior is possible, and will be discussed in tutorial 4.

1.10 Array basics
Arrays come with extremely rich functionality. A tutorial can only scratch the surface of the capabilities
available. More details will be provided in later tutorials; the details can be found in the numpy documen-
tation listed in Appendix A.

1.10.1 Creating arrays
There are a few di�erent ways to create arrays besides modules that obtain arrays from data �les such as
PyFITS.

> > > from numpy import *
> > > x = zeros((20,30))

creates a 20x30 array of zeros (default integer type; details on how to specify other types will follow). Note
that the dimensions (�shape� in numpy parlance) are speci�ed by giving the dimensions as a comma-separated
list within parentheses. The parentheses aren't necessary for a single dimension. As an aside, the parentheses
used this way are being used to specify a Python tuple; more will be said about those in a later tutorial. For
now you only need to imitate this usage.

Likewise one can create an array of 1's using the ones() function.
The arange() function can be used to create arrays with sequential values. E.g.,

> > > arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
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Note that that the array defaults to starting with a 0 value and does not include the value speci�ed (though
the array does have a length that corresponds to the argument)

Other variants:

> > > arange(10.)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9])
> > > arange(3,10)
array([3, 4, 5, 6, 7, 8, 9])
> > > arange(1., 10., 1.1) # note trickiness
array([1. , 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8])

Finally, one can create arrays from literal arguments:

> > > print array([3,1,7])
[3 1 7]
> > > print array([[2,3],[4,4]])
[[2 3]
[4 4]]

The brackets, like the parentheses in the zeros example above have a special meaning in Python which will
be covered later (Python lists). For now, just mimic the syntax used here.

1.10.2 Array numeric types
numpy supports all standard numeric types. The default integer matches what Python uses for integers,
usually 32-bit integers or what numpy calls int32. The same is true for �oats, i.e., generally 64-bit doubles
called float64 in numarray. The default complex type is complex64. Many of the functions accept a dtype
argument. For example

> > > zeros(3, int8) # Signed byte
> > > zeros(3, dtype=uint8) # Unsigned byte
> > > array([2,3], dtype=float32)
> > > arange(4, dtype=complex64)

The possible types are int8, uint8, int16, uint16, int32, uint32, int64, uint64, float32, float64,
complex64, complex128. If one uses int, float, or complex, one gets the default precision for that type
on the platform you are using. There are a number of other aliases for these types, as well as a few other
possibilities, but won't be discussed here. To �nd out the type of an array use the dtype attribute. E.g.,

> > > arr = arange(4.)
> > > arr.dtype
dtype('float64')

To convert an array to a di�erent type use the astype() method, e.g,

> > > a = arr.astype(float32)

1.10.3 Printing arrays
Interactively, there are two common ways to see the value of an array. Like many Python objects, just typing
the name of the variable itself will print its contents (this only works in interactive mode). You can also
explicitly print it. The following illustrates both approaches:

> > > x = arange(10)
> > > x
array([0, 1, 2, 3, 4, 5, 6, 7, 8 9])
> > > print x
[0 1 2 3 4 5 6 7 8 9]
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By default the array module limits the amount of an array that is printed out (to spare you the e�ects of
printing out millions of values). For example:

> > > x = arange(1000000)
print x
[ 0 1 2 ..., 999997 999998 999999]

If you really want to print out lots of array values, you can disable this feature or change the size of the
threshold.

> > > set_printoptions(threshold=1000000) # prints entire array if not
# more than a million elements

> > > set_printoptions(threshold=1000) # reset default

Can also use this function to alter the number of digits printed, how many elements at the beginning and
end for oversize arrays, number of characters per line, and whether to suppress scienti�c notation for small
�oats.

1.10.4 Indexing 1-D arrays
As with IDL and matlab, there are many options for indexing arrays.

> > > x = arange(10)
> > > x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Simple indexing:

> > > x[2] # 3rd element
2

Indexing is 0-based. The �rst value in the array is x[0]
Indexing from end:

> > > x[-2] # -1 represents the last element, -2 next to last...
8

Slices
To select a subset of an array:

> > > x[2:5]
array([2, 3, 4])

Note that the upper limit of the slice is not included as part of the subset! This is viewed as unexpected by
newcomers and a defect. Most �nd this behavior very useful after getting used to it (the reasons won't be
given here). Also important to understand is that slices are views into the original array in the same sense
that references view the same array. The following demonstrates:

> > > y = x[2:5]
> > > y[0] = 99
> > > y
array([99, 3, 4])
> > > x
array([0, 1, 99, 3, 4, 5, 6, 7, 8, 9])

Changes to a slice will show up in the original. If a copy is needed use x[2:5].copy()
Short hand notation
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> > > x[:5] # presumes start from beginning
array([ 0, 1, 99, 3, 4])
> > > x[2:] # presumes goes until end
array([99, 3, 4, 5, 6, 7, 8, 9])
> > > x[:] # selects whole dimension
array([0, 1, 99, 3, 4, 5, 6, 7, 8, 9])

Strides:

> > > x[2:8:3] # �Stride� every third element
array([99, 5])

Index arrays:

> > > x[[4,2,4,1]]
array([4, 99, 4, 1])

Using results of where function (which behaves somewhat di�erently than for IDL; covered in tutorial 3):

> > > x[where(x>5)]
array([99, 6, 7, 8, 9])

Mask arrays:

> > > m = x > 5
> > > m
array([False, False, True, False, False, False, True, True, True, True], dtype=Bool)
> > > x[m]
array([99, 6, 7, 8, 9])

1.10.5 Indexing multidimensional arrays
Before describing this in detail it is very important to note an item regarding multidimensional indexing that
will certainly cause you grief until you become accustomed to it. BY DEFAULT ARRAY INDICES USE THE
OPPOSITE CONVENTION AS FORTRAN, IDL AND IRAF REGARDING ORDER OF INDICES FOR
MULTIDIMENSIONAL ARRAYS! There are long standing reasons for this and there are good reasons why
this cannot be changed. It is possible to de�ne arrays so that the traditional index ordering applies (details
will not be given here). Nevertheless, if you are working with large images you are strongly encouraged to
avoid this; it will only cause you problems later and you will eventually go insane as a result. Well, perhaps
we exaggerate. But don't do it. (For those using multidimensional arrays in a non-image context, this advice
may not be appropriate. See Appendix G for a more in-depth discussion of the pros and cons of the alternate
approach) Yes, we realize this is viewed by most as a tremendous defect. (If that prevents you from using
or considering Python, so be it, but do weigh this against all the other factors before dismissing Python as
a numerical tool out of hand).

> > > im = arange(24)
> > > im.shape=(4,6)
> > > im
array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])

To emphasize the point made in the previous paragraph, the index that represents the most rapidly varying
dimension in memory is the 2nd index, not the �rst. We are used to that being the �rst dimension. Thus
for most images read from a FITS �le, what we have typically treated as the �x� index will be the second
index. For this particular example, the location that has the value 8 in the array is im[1, 2].
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> > > im[1, 2]
8

Partial indexing:

> > > im[1]
array([6, 7, 8, 9, 10, 11])

If only some of the indices for a multidimensional array are speci�ed, then the result is an array with the
shape of the �leftover� dimensions, in this case, 1-dimensional. The 2nd row is selected, and since there is
no index for the column, the whole row is selected.

All of the indexing tools available for 1-D arrays apply to n-dimensional arrays as well. To understand
all the indexing options in their full detail, read section 3.4 in the Guide to Numpy (see Appendix A for
links to this book).

1.10.6 Compatibility of dimensions
In operations involving combining (e.g., adding) arrays or assigning them there are rules regarding the
compatibility of the dimensions involved. For example the following is permitted:

> > > x[:5] = 0

since a single value is considered �broadcastable� over a 5 element array. But this is not permitted:

> > > x[:5] = array([0,1,2,3])

since a 4 element array does not match a 5 element array.
The following explanation can probably be skipped by most on the �rst reading; it is only important to

know that rules for combining arrays of di�erent shapes are quite general. It is hard to precisely specify the
rules without getting a bit confusing, but it doesn't take long to get a good intuitive feeling for what is and
isn't permitted. Here's an attempt anyway: The shapes of the two involved arrays when aligned on their
trailing part must be equal in value or one must have the value one for that dimension. The following pairs
of shapes are compatible:

(5,4):(4,) -> (5,4)
(5,1):(4,) -> (5,4)
(15,3,5):(15,1,5) -> (15,3,5)
(15,3,5):(3,5) -> (15,3,5)
(15,1,5):(3,1) -> (15,3,5)

so that one can add arrays of these shapes or assign one to the other (in which case the one being assigned
must be the smaller shape of the two). For the dimensions that have a 1 value that are matched against
a larger number, the values in that dimension are simply repeated. For dimensions that are missing, the
sub-array is simply repeated for those. The following shapes are not compatible:

(3,4):(4,3)
(1,3):(4,)

Examples:

> > > x = zeros((5,4))
> > > x[:,:] = [2,3,2,3]
> > > x
array([[2, 3, 2, 3],

[2, 3, 2, 3],
[2, 3, 2, 3],
[2, 3, 2, 3],
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[2, 3, 2, 3]])
> > > a = arange(3)
> > > b = a[:] # different array, same data (huh?)
> > > b.shape = (3,1)
> > > b
array([[0],

[1],
[2]])

> > > a*b # outer product
array([[0, 0, 0],

[0, 1, 2],
[0, 2, 4]])

1.10.7 ufuncs
A ufunc (short for Universal Function) applies the same operation or function to all the elements of an array
independently. When two arrays are added together, the add ufunc is used to perform the array addition.
There are ufuncs for all the common operations and mathematical functions. More specialized ufuncs can
be obtained from add-on libraries. All the operators have corresponding ufuncs that can be used by name
(e.g., add for +). These are all listed in table below. Ufuncs also have a few very handy methods for binary
operators and functions whose use are demonstrated here.

> > > x = arange(9)
> > > x.shape = (3,3)
> > > x
array([0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

> > > add.reduce(x) # sums along the first index
array([9, 12, 15])
> > > add.reduce(x, axis=1) # sums along the 2nd index
array([3, 12, 21])
> > > add.accumulate(x) # cumulative sum along the first index
array([[0, 1, 2],

[3, 5, 7],
[9, 12, 15]])

> > > multiply.outer(arange(3),arange(3))
array([[0, 0, 0],

[0, 1, 2],
[0, 2, 4]])

Standard Ufuncs (with corresponding symbolic operators, when they exist, shown in parentheses)

18



add (+) log greater (>)
subtract (-) log10 greater_equal (>=)
multiply (*) cos less (<)
divide (/) arcos less_equal (<=)
remainder (%) sin logical_and
absolute, abs arcsin logical_or
�oor tan logical_xor
ceil arctan bitwise_and (&)
fmod cosh bitwise_or (|)
conjugate sinh bitwise_xor (^)
minimum tanh bitwise_not (~)
maximum sqrt rshift (>>)
power (**) equal (==) lshift (<<)
exp not_equal (!=)

Note that there are no corresponding Python operators for logical_and and logical_or. The Python
and and or operators are NOT equivalent to these respective ufuncs! (Try them on arrays and see what
happens.)

1.10.8 Array functions
There are many array utility functions. The following lists the more useful ones with a one line description.
See the numarray manual for details on how they are used. Arguments shown with argument=value indicate
what the default value is if called without a value for that argument. Those functions that are identical to
array methods are so noted.

all(a, axis=None): are all elements of array nonzero? [also method], identical to alltrue()

allclose(a1, a2, rtol=1.e-5, atol=1.e-8 ): true if all elements within speci�ed amount (between two arrays)

alltrue(a, axis=0 ): are all elements nonzero along speci�ed axis true.

any(a, axis= None): are any elements of an array nonzero [also method], identical to sometrue()

argmax(a, axis=-1 ), argmin(a,axis=-1 ): return array with min/max locations for selected axis

argsort(a, axis=-1 ): returns indices of results of sort on an array

choose(selector, population, clipmode=CLIP): �lls speci�ed array by selecting corresponding values from a
set of arrays using integer selection array (population is a tuple of arrays; see tutorial 2)

clip(a, amin, amax ): clip values of array a at values amin, amax

dot(a1, a2 ): dot product of arrays a1 & a2

compress(condition, a ,axis=0 ): selects elements from array a based on Boolean array condition

concatenate(arrays, axis=0 ): concatenate arrays contained in sequence of arrays arrays

cumproduct(a, axis=0 ): net cumulative product along speci�ed axis. Note: see caution after this list re-
garding cumulative operations.

cumsum(a, axis=0 ): accumulate array along speci�ed axis. Note: see caution after this list regarding cumu-
lative operations.

diagonal(a, o�set=0, axis1=0, axis2=1 ): returns diagonal of 2-d matrix with optional o�sets.

fromfile(�le, type, shape=None): Use binary data in �le to form new array of speci�ed type.

fromstring(datastring, type, shape=None): Use binary data in datastring to form new array of speci�ed
shape and type
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identity(n, type=None): returns identity matrix of size nxn.

indices(shape, type=None): generate array with values corresponding to position of selected index of the
array

innerproduct(a1, a2 ): guess

matrixmultiply(a1, a2 ): guess

outerproduct(a1, a2 ): guess

product(a, axis=0 ): net product of elements along speci�ed axis. Note: see caution after this list regarding
cumulative operations.

ravel(a): creates a 1-d version of an array

repeat(a, repeats, axis=0 ): generates new array with repeated copies of input array a

resize(a, shape): replicate or truncate array to new shape

searchsorted(bin, a): return indices of mapping values of an array a into a monotonic array bin

sometrue(a, axis=0 ): are any elements along speci�ed axis true

sort(a, axis=-1 ): sort array elements along selected axis

sum(a, axis=0 ): sum array along speci�ed axis. Note: see caution after this list regarding cumulative oper-
ations.

swapaxes(a, axis1, axis2 ): switch indices for axis of array (doesn't actually move data, just maps indices
di�erently)

trace(a, o�set=0, axis1=0, axis2=1 ): compute trace of matrix a with optional o�set.

transpose(a, axes=None): transpose indices of array (doesn't actually move data, just maps indices di�er-
ently)

where(a): �nd �true� locations in array a

Caution: The cumulative class of operations that either sum or multiply elements of an array (sum, product,
cumsum, cumproduct) use the input array type as the type to perform the cumulative sum or product.
If you are not using the largest type for the array (i.e., int64, �oat64, etc.) you are asking for trouble.
One is likely to run into integer over�ows or �oating point precision problems if you don't specifcally
ask for a higher precision result, especially for large array. One should get into the habit of specifying
the keyword argument dtype to a highest precision type when using these functions, e.g. sum(arr,
dtype=�oat64)).

1.10.9 Array methods
Arrays have several methods. They are used as methods are with any object. For example (using the

array from the previous example):
> > > # sum all array elements
> > > x.sum() # the L indicates a Python Long integer
36L

The following lists all the array methods that exist for an array object a (a number are equivalent to array
functions; these have no summary description shown):

a.all(axis=None, out=None)

a.any(axis=None, out=None)
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a .argmax(axis=None, out=None)

a .argmin(axis=None, out=None)

a .argsort(axis=None, kind='quick', order=None)

a .astype(dtype): copy array to speci�ed numeric type

a.byteswap(inplace=False): swap bytes in place

a.choose(c0, c1,...cn, out=None, clip='raise' )

a.clip(min, max, out=None)

a.compress(condition, axis=None, out=None)

a.conj(out=None): same as a.conjugate()

a .conjugate(out=None): complex conjugate. Same as a.conj()

a .copy(): produce copied version of array (instead of view)

a.cumprod(axis=None, dtype=None, out=None). Note caution from previous section about cumulative
operations.

a.cumsum(axis=None, dtype=None, out=None). Note caution from previous section about cumulative op-
erations.

a .diagonal(o�set=0, axis1=0, axis2=1 )

a.dtype()

a.dump(�le)

a.dumps()

a.fill(scalar)

a.flatten(order='C')

a.getfield(dtype, o�set=0 )

a.item(*args)

a.itemset(*args)
a .max(axis=None): maximum value in array

a.mean(axis=None, dtype=None, out=None). Note caution from previous section about cumulative opera-
tions.

a .min(axis=None): minimum value in array

a.newbyteorder()

a.nonzero(): True when array is not zero.

a.prod(axis=None, dtype=None, out=None). Note caution from previous section about cumulative opera-
tions.

a.ptp(axis=None, out=None)

a.put(indices, values, mode='raise' )
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a.ravel(order='C')
a .repeat(a,repeats,axis=0 ):

a .resize(d1, d2, ..., dn, refcheck=1, order='C' ):

a.round(decimals=0, out=None)

a.searchsorted(values)

a.setfield(value, dtype, o�set)

a.setflags(write=None, align=None, uic=None)

a.sort(axis=None, kind='quick' )

a.squeeze()

a.std(axis=None, dtype=None, out=None)

a.sum(axis=None, dtype=None, out=None). Note caution from previous section about cumulative opera-
tions.

a.swapaxes(axis1, axis2 )

a.take(indices, axis=None, out=None, mode='raise' )

a.type(): returns type of array

a.tofile(�le, sep=�, format=�): write binary data to �le

a.tolist(): convert data to Python list format

a.tostring(order='C' ): copy binary data to Python string

a.trace(o�set=0, axis1=0, axis2=1, dtype=None, out=None)

a.transpose(permute): transpose array

a.std(axis=None, dtype=None): standard deviation

a.sum(axis=None, dtype=None): sum of all elements

a.swapaxes(axis1, axis2 )

a.trace(o�set, axis1=0, axis2=0, dtype=None)

a.var(axis=None, dtype=None, out=None)

a.view(obj ): generate a view of the data based on the type of the supplied object

1.10.10 Array attributes:
The following lists all the array attributes. Some can be modi�ed by assignment (e.g., arr.attribue =
newvalue) and some cannot directly be assigned to. These are indicated by �Modi�able� and �Not Modi�able�
respectively. Note that attributes marked as �Not modi�able� doesn't mean they can't change. For example,
if one assigns a new shape to the shape attribue, the ndim value may change as a result.

a.base: Object array is using for its data bu�er, or None if it doesn't own the memory for the data. Not
Modi�able.

a.ctypes: Object to simplify interaction with the ctypes module (see Guide to Numpy book, section 3.1.4,
for details). Not modi�able.
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a.data: The bu�er object that holds the array data. Modi�able

a.dtype: data type object for the array. Modi�able.

a.flags: Information on the internal data representation. Not modi�able (though some attribues of the
�ags object can be changed).

a.flat: returns view of array treating it as 1-dimensional (actually an iterator object, see Guide to Numpy
book. section 8.8, for details)

a.itemsize: Size in bytes of each element of the array. Not modi�able

a.nbytes: Total number of bytes used. Not modi�able.

a.ndim: Number of dimensions in the array. Not modi�able.

a.shape: returns shape of array. Modi�able.

a.size: Total number of elements. Not modi�able.

a.strides: Tuple containing information on the spacing of elements in each dimension (see Guide to Numpy
book, section 3.1.1, for details). Modi�able.

a.real: return real component of array (exists for all types). Modi�able

a.imag: return imaginary component (exists only for complex types). Modi�able

__array_interface__,__array_struct__,__array_priority__: For advanced users only, see Guide to
Numpy book, section 3.1.4, for details.

1.11 Example
The following example shows how to use some of these tools. The idea is to select only data within a given
radius of the center of the galaxy displayed and compute the total �ux within that radius using the built-in
array facilities.

First we will create a mask for all the pixels within 50 pixels of the center. We begin by creating x and
y arrays that whose respective values indicate the x and y locations of pixels in the arrays:

# first find location of maximum in image
y, x = indices(im.shape, dtype=float32) # note order of x, y!
# after finding peak at 257,258 using ds9
x = x-257 # make peak have 0 value
y = y-258
radius = sqrt(x**2+y**2)
mask = radius < 50
display mask*im
(mask*im).sum() # sum total of masked image
# or
im[where(mask)].sum() # sum those points within the radius
# look Ma, no loops!

1.12 Exercises
The needed data for these exercises can be downloaded from stsdas.stsci.edu/python.

1. Start up Python (Python, PyRAF, or IPython). Type print 'hello world'. Don't go further until
you master this completely.
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2. Read pix.�ts, �nd the value of the OBJECT keyword, and print all the image values in the 10th column
of the image.

3. Scale all the values in the image by 2.3 and store in a new variable. Determine the mean value of the
scaled image

4. Save the center 128x128 section of the scaled image to a new FITS �le using the same header. It
won't be necessary to update the NAXIS keywords of the header; that will be handled automatically
by PyFITS.

5. Extra credit: Create an image (500x500) where the value of the pixels is a Gaussian-weighted sinusoid
expressed by the following expression:

sin(x/π)e−((x−250)2+(y−250)2)/2500.

where x represents the x pixel location and likewise for y. Display it. Looking at the numarray
manual, �nd out how to perform a 2-D FFT and display the absolute value of the result.
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2 Reading and plotting spectral data
In this tutorial we will cover some simple plotting commands using matplotlib, a Python plotting package
developed by John Hunter of the University of Chicago. We will also talk about reading FITS tables, delve
a little deeper into some of Python's data structures, and use a few more of Python's features that make
coding in Python so straightforward.

2.1 Example session to read spectrum and plot it
The sequence of commands below represent reading a spectrum from a FITS table and using matplotlib to
plot it. Each step will be explained in more detail in following subsections.

> > > import pyfits
> > > from pylab import * # import plotting module
> > > pyfits.info('fuse.fits')
> > > tab = pyfits.getdata('fuse.fits') # read table
> > > tab.names # names of columns
> > > tab.formats # formats of columns
> > > flux = tab.field('flux').flat # reference flux column
> > > wave = tab.field('wave').flat
> > > flux.copy().shape # show shape of flux column array
> > > plot(wave, flux) # plot flux vs wavelength

# add xlabel using symbols for lambda/angstrom
> > > xlabel(r'$\lambda (\angstrom)$', size=13)
> > > ylabel('Flux')
# Overplot smoothed spectrum as dashed line
> > > from convolve import boxcar
> > > sflux = boxcar(flux.copy(), (100,)) # smooth flux array
> > > plot(wave, sflux, '--r', hold=True) # overplot red dashed line
> > > subwave = wave[::100] # sample every 100 wavelengths
> > > subflux = flux.flat[::100]
> > > plot(subwave,subflat,'og') # overplot points as green circles
> > > errorbar(subwave, subflux, yerr=0.05*subflux, fmt='.k')
> > > legend(('unsmoothed', 'smoothed', 'every 100'))
> > > text(1007, 0.5, 'Hi There')

# save to png and postscript files
> > > savefig('fuse.png')
> > > savefig('fuse.ps')

2.2 An aside on how Python �nds modules
When you import a module, how does Python know where to look for it? When you start up Python, there
is a search path de�ned that you can access using the path attribute of the sys module. So:

> > > import sys
> > > sys.path
[�, 'C:\\WINNT\\system32\\python23.zip',
'C:\\Documents and Settings\\rij\\SSB\\demo',
'C:\\Python23\\DLLs', 'C:\\Python23\\lib',
'C:\\Python23\\lib\\plat-win',
'C:\\Python23\\lib\\lib-tk',
'C:\\Python23',
'C:\\Python23\\lib\\site-packages ',
'C:\\Python23\\lib\\site-packages\\numpy',
'C:\\Python23\\lib\\site-package s\\gtk-2.0',
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'C:\\Python23\\lib\\site-packages\\win32',
'C:\\Python23\\lib\\site -packages\\win32\\lib',
'C:\\Python23\\lib\\site-packages\\Pythonwin']

This is a list of the directories that Python will search when you import a module. If you want to �nd out
where Python actually found your imported module, the __file__ attribute shows the location:

> > > pyfits.__file__
'C:\\Python23\\lib\\site-packages\\pyfits.pyc'

Note the double '\' characters in the �le speci�cations; Python uses \ as its escape character (which means
that the following character is interpreted in a special way. For example, \n means �newline�, \t means
�tab� and \a means �ring the terminal bell�). So if you really want a backslash, you have to escape it with
another backslash. Also note that the extension of the pyfits module is .pyc instead of .py; the .pyc �le
is the bytecode compiled version of the .py �le that is automatically generated whenever a new version of
the module is executed.

2.3 Reading FITS table data (record arrays)
As well as reading regular FITS images, PyFITS also reads tables as arrays of records. These record arrays
may be indexed just like numeric arrays though numeric operations cannot be performed on the record arrays
themselves. All the columns in a table may be accessed as arrays as well.

> > > import pyfits

Assuming a FITS table of FUSE data in the current directory with the imaginative name of 'fuse.fits'

> > > pyfits.info('fuse.fits')
Filename: fuse.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 365 () int16
1 SPECTRUM BinTableHDU 35 1R x 7C [10001E,
10001E, 10001E, 10001J, 10001E, 10001E, 10001I]
> > > tab = pyfits.getdata('fuse.fits') # returns table as record array

PyFITS record arrays have a names attribute that contains the names of the di�erent columns of the array
(there is also a format attribute that describes the type and contents of each column).

> > > tab.names
['WAVE', 'FLUX', 'ERROR', 'COUNTS', 'WEIGHTS', 'BKGD', 'QUALITY']
> > > tab.formats
['10001E', '10001E', '10001E', '10001J','10001E', '10001E', '10001I']

The latter indicates that each column element contains a 10001 element array of the types indicated.

> > > tab.shape
(1,)

The table only has one row. Each of the columns may be accessed as it own array by using the �eld method.
Note that the shape of these column arrays is the combination of the number of rows and the size of the
columns. Since in this case the columns contain arrays, the result will be two-dimensional (albeit with one
of the dimensions only having length one). For example:

> > > wave = tab.field('wave')
> > > wave.shape
(1, 10001)

26



To facilitate further operations on the arrays, the .�at attribute is used is to turn these into 1-D arrays.
Well, not exactly. The .�at attribute is not exactly an array; it behaves like a 1-D equivalent most times,
but in some respects it isn't (it's actually an iterator object, but discussion of that point will be deferred).
Hence the use of the .copy() method so that one can get the shape.

> > > wave = tab.field('wave').flat
> > > flux = tab.field('flux').flat
> > > flux.copy().shape
(10001, )

The arrays obtained by the �eld method are not copies of the table data, but instead are views into the
record array. If one modi�es the contents of the array, then the table itself has changed. Likewise, if a record
(i.e., row) of the record array is modi�ed, the corresponding column array will change. This is best shown
with a di�erent table:

> > > tab2 = pyfits.getdata('table2.fits')
> > > tab2.shape # how many rows?
(3,)
> > > print tab2
[('M51', 13.5, 2) ('NGC4151', 5.8, 5) ('Crab Nebula', 11.12, 3)]
> > > col3 = tab2.field('nobs')
> > > col3
array([2, 5, 3], dtype=int16)
> > > col3[2] = 99
> > > print tab2
[('M51', 13.5, 2) ('NGC4151', 5.8, 5) ('Crab Nebula', 11.12, 3)]

Numeric column arrays may be treated just like any other numpy array. Columns that contain character
�elds are returned as character arrays (with their own methods, described in the PyFITS User Manual)

Updated or modi�ed tables can be written to FITS �les using the same functions as for image or array
data.

2.4 Quick introduction to plotting
The package matplotlib is used to plot arrays and display image data. This section gives a few examples
of how to make quick plots. More examples will appear later in the tutorial (these plots assume that the
.matplotlibrc �le has been properly con�gured; the default version at STScI has been set up that way.
There will be more information about the .matplotlibrc �le later in the tutorial).

First, we must import the functional interface to matplotlib

> > > from pylab import *

2.4.1 Simple x-y plots
To plot �ux vs wavelength:

> > > plot(wave, flux)
[<matplotlib.lines.Line2D instance at 0x02A07440>]
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Note that the resulting plot is interactive. The toolbar at the bottom is used for a number of actions.
The button with arrows arranged in a cross pattern is used for panning or zooming the plot. In this mode
the zooming is accomplished by using the middle mouse button; dragging it in the x direction a�ects the
zoom in that direction and likewise for the y direction. The button with a magnifying glass and rectangle
is used for the familiar zoom to rectangle (use the left mouse button to drag de�ne a rectangle that will be
the new view region for the plot. The left and right arrow buttons can be used to restore di�erent views of
the plot (a history is kept of every zoom and pan). The button with a house will return it the the original
view. The button with a diskette allows one to save the plot to a .png or postscript �le. You can resize the
window and the plot will re-adjust to the new window size.

Also note that this and many of the other pylab commands result in a cryptic printout. That's because
these function calls return a value. In Python when you are in an interactive mode, the act of entering a
value at the command line, whether it is a literal value, evaluated expression, or return value of a function,
Python attempts to print out some information on it. Sometimes that shows you the value of the object
(if it is simple enough) like for numeric values or strings, or sometimes it just shows the type of the object,
which is what is being shown here. The functions return a value so that you can assign it to a variable
to manipulate the plot later (it's not necessary to do that, though for now it does help keep the screen
uncluttered). We are likely to change the behavior of the object so that nothing is printed (even though it
is still returned) so your session screen will not be cluttered with these messages.

2.4.2 Labeling plot axes
It is possible to customize plots in many ways. This section will just illustrate a few possibilities

> > > xlabel(r'$\lambda (\angstrom)$', size=13)
<matplotlib.text.Text instance at 0x029A9F30>
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> > > ylabel('Flux')
<matplotlib.text.Text instance at 0x02A07BC0>
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One can add standard axis labels. This example shows that it is possible to use special symbols using
TEX notation.

2.4.3 Overplotting
Overplots are possible. First we make a smoothed spectrum to overplot.

> > > from convolve import boxcar # yet another way to import functions
> > > sflux = boxcar(flux, (100,)) # smooth flux array using size 100 box
> > > plot(wave, sflux, '--r', hold=True) # overplot red dashed line
[<matplotlib.lines.Line2D instance at 0x0461FC60>]

This example shows that one can use the hold keyword to overplot, and how to use di�erent colors and
linestyles. This case uses a terse representation (-- for dashed and r for red) to set the values, but there
are more verbose ways to set these attributes. As an aside, the function that matplotlib uses are closely
patterned after Matlab. Next we subsample the array to overplot circles and error bars for just those points.

> > > subwave = wave[::100] # sample every 100 wavelengths
> > > subflux = flux[::100]
> > > plot(subwave,subflat,'og', hold=True) # overplot points as green circles
[<matplotlib.lines.Line2D instance at 0x046EBE40>]
> > > error = tab.field('error')
> > > suberror = error.flat[::100]
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> > > errorbar(subwave, subflux, suberror, fmt='.k', hold=True)
(<matplotlib.lines.Line2D instance at 0x046EBEE0>, <a list of 204 Line2D errorbar objects>)

2.4.4 Legends and annotation
Adding legends is simple:

> > > legend(('unsmoothed', 'smoothed', 'every 100'))
<matplotlib.legend.Legend instance at 0x04978D28>

As is adding arbitrary text.

> > > text(1007., 0.5e-12, 'Hi There')
<matplotlib.text.Text instance at 0x04B27328>
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2.4.5 Saving and printing plots
Matplotlib uses a very di�erent style from IDL regarding how di�erent devices are handled. Underneath the
hood, matplotlib saves all the information to make the plot; as a result, it is simple to regenerate the plot
for other devices without having to regenerate the plotting commands themselves (it's also why the �gures
can be interactive). The following saves the �gure to a .png and postscript �le respectively.

> > > savefig('fuse.png')
> > > savefig('fuse.ps')
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2.5 A little background on Python sequences
Python has a few, powerful built-in �sequence� data types that are widely used. You have already encountered
3 of them: strings, lists and tuples.

2.5.1 Strings
Strings are so ubiquitous, that it may seem strange treating them as a special data structure. That they
share much with the other two (and arrays) will be come clearer soon. First we'll note here that there are
several ways to de�ne literal strings. One can de�ne them in the ordinary sense using either single quotes
(') or double quotes ("). Furthermore, one can de�ne multi-line strings using triple single or double quotes
to start and end the string. For example:

> > > s = �'This is an example
of a multi-line string that
goes on and on and on.�'
> > > s
'This is an example\nof a string that\ngoes on and on\nand on'
> > > print s
This is an example
of a string that
goes on and on
and on

As with C, one uses the backslash character in combination with others to denote special characters. The
most common is \n for new line (which means one uses \\ to indicate a single \ is desired). See the Python
documentation for the full set. For certain cases (like regular expressions or MS Windows path names), it
is more desirable to avoid special interpretation of backslashes. This is accomplished by prefacing the string
with an r (for 'raw' mode):

> > > print 'two lines \n in this example'
two lines
in this example
> > > print r'but not \n this one'
but not \n this one

Strings are full �edged Python objects with many useful methods for manipulating them. The following is
a brief list of all those available with a few examples illustrating their use. Details on their use can be found
in the Python library documentation, the references in Appendix A or any introductory Python book. Note
that optional arguments are enclosed in square brackets. For a given string s :

s .capitalize(): capitalize �rst character

s .center(width [,�llchar]): return string centered in string of width speci�ed with optional �ll char

s .count(sub [,start[,end]]): return number of occurrences of substring

s .decode([encoding [,errors]]): see documentation

s .encode([encoding [,errors]]): see documentation

s .endswith(su�x [,start [,end]]): True if string ends with su�x

s .expandtabs([tabsize]): defaults to 8 spaces

s .find(substring[,start [,end]]): returns position of substring found

s .index(substring[,start [,end]]): like �nd but raises exception on failure
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s .isalnum(): true if all characters are alphanumeric

s .isdigit(): true if all characters are digits

s .islower(): true if all characters are lowercase

s .isspace(): true if all characters are whitespace

s .istitle(): true if titlecased

s .isupper(): true if all characters are uppercase

s .join(seq): use string to join strings in the seq (note, this is a method of the string used to join the strings
in seq, not the sequence of strings!)

s .ljust(width [,�llchar]): return string left justi�ed within string of speci�ed width

s .lower(): convert to lower case

s .lstrip([chars]): strip leading whitespace (and optional characters speci�ed)

s.partition(sep): Split a string at the �rst occurance of sep and return a 3-tuple containing the �rst part,
sep, and the last part of the string. If sep isn't found, returns string followed by two empty strings.
(new in Python 2.5)

s .replace(old, new [,count]): substitute old substring with new string

s .rfind(substring [,start [,end]]): return position of rightmost match of substring

s .rindex(substring [,start [,end]]): like r�nd but raises exception on failure

s .rjust(width [,�llchar]): like ljust but right justi�ed instead

s.rpartition(sep): same as partition, excepts �nds last occurance of sep.(new in Python 2.5)

s .rsplit([sep [,maxsplit]]): similar to split, see documentation

s .split([sep [,maxsplit]): return list of words delimited by whitespace (or optional sep string)

s .splitlines([keepends]): returns list of lines within string

s .startswith(pre�x [.start [,end]]): true if string begins with pre�x

s .strip([chars]): strip leading and trailing whitespace

s .swapcase(): switch lower to upper case and visa versa

s .title(): return title-cased version

s .translate(table [,deletechars]): maps characters using table

s .upper(): convert to upper case

s .zfill(width): left �ll string with zeros to given width

> > > �hello world�.upper()
�HELLO WORLD�
> > > s = �hello world�
> > > s.find(�world�)
6
> > > s.endwith(�ld�)
True
> > > s.split()
['hello', 'world]
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2.5.2 Lists
Think of lists as one-dimensional arrays that can contain anything for its elements. Unlike arrays, the
elements of a list can be di�erent kinds of objects (including other lists) and the list can change in size. Lists
are created using simple brackets, e.g.:

> > > mylist = [1, 'hello', [2,3]]

This particular list contains 3 objects, the integer value 1, the string 'hello' and the list [2, 3].
Empty lists are permitted:

> > > mylist = []

Lists also have several methods:

l .append(x ): adds x to the end of the list

l .extend(x ): concatenate the list x to the list

l .count(x ): return number of elements equal to x

l .index(x [,i [,j]]): return location of �rst item equal to x

l .insert(i, x ): insert x at ith position

l .pop([i]): return last item [or ith item] and remove it from the list

l .remove(x ): remove �rst occurrence of x from list

l .reverse(): reverse elements in place

l .sort([cmp [,key [,reverse]]]): sort the list in place (how sorts on disparate types are handled are described
in the documentation)

2.5.3 Tuples
One can view tuples as just like lists in some respects. They are created from lists of items within a pair of
parentheses. For example:

> > > mytuple = (1, �hello�, [2,3])

Because parentheses are also used in expressions, there is the odd case of creating a tuple with only one
element:

> > > mytuple = (2) # not a tuple!

doesn't work since (2) is evaluated as the integer 2 instead of a tuple. For single element tuples it is necessary
to follow the element with a comma:

> > > mytuple = (2,) # this is a tuple

Likewise, empty tuples are permitted:

> > > mytuple = ()

If tuples are a lot like lists why are they needed? They di�er in one important characteristic (why this is
needed won't be explained here, just take our word for it). They cannot be changed once created; they are
called immutable. Once that �list� of items is identi�ed, that list remains unchanged (if the list contains
mutable things like lists, it is possible to change the contents of mutable things within a tuple, but you can't
remove that mutable item from the tuple). Tuples have no standard methods.

33



2.5.4 Standard operations on sequences
Sequences may be indexed and sliced just like arrays:

> > > s[0]
'h'
> > > mylist2 = mylist[1:]
> > > mylist2
[�hello�, [2, 3]]

Note that unlike arrays, slices produce a new copy.
Likewise, index and slice assignment are permitted for lists (but not for tuples or strings, which are also

immutable)

> > > mylist[0] = 99
> > > mylist
[99, �hello�, [2, 3]]
> > > mylist2
[1, �hello�, [2,3]] # note change doesn't appear on copy
> > > mylist[1:2] = [2,3,4]
> > > mylist
[1, 2, 3, 4, [2, 3]]

Note that unlike arrays, slices may be assigned a di�erent sized element. The list is suitably resized.
There are many built-in functions that work with sequences. An important one is len() which returns

the length of the sequence. E.g,

> > > len(s)
11

This function works on arrays as well (arrays are also sequences), but it will only return the length of the
next dimension, not the total size:

> > > x = array([[1,2],[3,4]])
> > > print x
[[1 2]
[3 4]]
> > > len(x)
2

For strings, lists and tuples, adding them concatenates them, multiplying them by an integer is equivalent
to adding them that many times. All these operations result in new strings, lists, and tuples.

> > > 'hello '+'world'
'hello world'
> > > [1,2,3]+[4,5]
[1,2,3,4,5]
> > > 5*'hello '
'hello hello hello hello hello '

2.5.5 Dictionaries
Lists, strings and tuples are probably somewhat familiar to most of you. They look a bit like arrays, in that
they have a certain number of elements in a sequence, and you can refer to each element of the sequence by
using its index. Lists and tuples behave very much like arrays of pointers, where the pointers can point to
integers, �oating point values, strings, lists, etc. The methods allow one to do the kinds of things you need
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to do to arrays; insert/delete elements, replace elements of one type with another, count them, iterate over
them, access them sequentially or directly, etc.

Dictionaries are di�erent. Dictionaries de�ne a mapping between a key and a value. The key can be either
a string, an integer, a �oating point number or a tuple (technically, it must be immutable, or unchangeable),
but not a list, dictionary, array or other mutable objects, while the value has no limitations. So, here's a
dictionary:

> > > thisdict = {'a':26.7, 1:['random string', 66.4], -6.3:�}

As dictionaries go, this one is pretty useless. There's a key whose name is the string 'a', with the �oating
point value of 26.7. The second key is the integer 1, and its value is the list containing a string and a
�oating point value. The third key is the �oating point number -6.3, with the empty string as its value.
Dictionaries are examples of a mapping data type, or associative array. The order of the key/value pairs in
the dictionary is not related to the order in which the entries were accumulated; the only thing that matters
is the association between the key and the value. So dictionaries are great for, for example, holding IRAF
parameter/value sets, associating numbers with �lter names, and passing keyword/value pairs to functions.
Like lists, they have a number of built-in methods:

d .copy(): Returns a shallow copy of the dictionary (subtleties of copies will be addressed in tutorial 4)

d .has_key(k): Returns True if key k is in d, otherwise False

d .items(): Returns a list of all the key/value pairs

d .keys(): Returns a list of all the keys

d .values(): Returns a list of all the values

d .fromkeys(seq[,value]): Creates new dictionary with keys from seq and values set to value.

d .iteritems(): Returns an iterator on all items

d .iterkeys(): Returns an iterator an all keys

d .itervalues(): Returns an iterator on all keys

d .get(k [,x]): Returns d[k] if k is in d, otherwise x

d .clear(): Removes all items

d .update(D): For each k in dictionary D, sets (or adds) k of dictionary = D[k]

d .setdefault(k [,x]): Returns value of k if k is in dictionary, otherwise creates key k, sets value to x, and
returns x

d .popitem(): Removes and returns an arbitrary item

So, for example, we could store the ACS photometric zeropoints in a dictionary where the key is the name
of the �lter:

> > > zeropoints = {'F435W':25.779, 'F475W':26.168, 'F502N':22.352, 'F550M':24.867,
'F555W':25.724, 'F606W':26.398, 'F625W':25.731, 'F658N':22.365, 'F660N':21.389,
'F775W':25.256, 'F814W':25.501, 'F850LP':24.326, 'F892N':21.865}
> > > filter = hdr['filter1']
> > > if filter.find('CLEAR') != -1: filter = hdr['filter2']
> > > zp = zeropoints[filter]

Dictionaries are very powerful; if your programs do not use them regularly, you are likely doing something
very wrong.

The power a�orded by dictionaries, lists, tuples and strings and their built-in methods is one of the great
strengths of Python.
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2.5.6 A section about nothing
Python uses a special value to represent a null value called None. Functions that don't return a value
actually return None. At the interactive prompt, a None value is not printed (but a print None will show
its presence).

2.6 More on plotting
It is impossible in a short tutorial to cover all the aspects of plotting. The following will attempt to give a
broad brush outline of matplotlib terminology, what functionality is available, and show a few examples.

2.6.1 matplotlib terminology, con�guration and modes of usage
The �whole� area that matplotlib uses for plotting is called a �gure. Matplotlib supports multiple �gures at
the same time. Interactively, a �gure corresponds to a window. A plot (a box area with axes and data points,
ticks, title, and labels...) is called an axes object. There may be many of these in a �gure. Underneath,
matplotlib has a very object-oriented framework. It's possible to do quite a bit without knowing the details
of it, but the most intricate or elaborate plots most likely will require some direct manipulation of these
objects. For the most part this tutorial will avoid these but a few examples will be shown of this usage.

While there may be many �gures, and many axes on a �gure, the matplotlib functional interface (i.e,
pylab) has the concept of current �gures, axes and images. It is to these that commands that operate on
�gures, axes, or images apply to. Typically most plots generate each in turn and so it usually isn't necessary
to change the current �gure, axes, or image except by the usual method of creating a new one. There are
ways to change the current �gure, axes, or image to a previous one. These will be covered in a later tutorial.

Matplotlib works with many �backends� which is another term for windowing systems or plotting formats.
We recommend (for now anyway) using the standard, if not quite as snazzy, Tkinter windows. These are
compatible with PyRAF graphics so that matplotlib can be used in the same session as PyRAF if you use
the TkAgg backend.

Matplotlib has a very large number of con�guration options. Some of these deal with backend defaults,
some with display conventions, and default plotting styles (linewidth, color, background, etc.). The con�g-
uration �le, .matplotlibrc, is a simple ascii �le and for the most part, most of the settings are obvious
in how they are to be set. Note that usage for interactive plotting requires a few changes to the standard
.matplotlibrc �le as downloaded (we have changed the defaults for our standard installation at STScI). A
copy of this modi�ed �le may be obtained from http://stsdas.stsci.edu/python/.matplotlibrc. Mat-
plotlib looks for this �le in a number of locations including the current directory. There is an environmental
variable that may be set to indicate where the �le may be found if yours is not in a standard location.

Some of the complexity of matplotlib re�ects the many kinds of usages it can be applied to. Plots
generated in script mode generally have interactive mode disabled to prevent needless regenerations of plots.
In such usage, one must explicitly ask for a plot to be rendered with the show() command. In interactive
mode, one must avoid the show command otherwise it starts up a GUI window that will prevent input from
being typed at the interactive command line. Using the standard Python interpreter, the only backend that
supports interactive mode is TkAgg. This is due to the fact most windowing systems require an event loop
to be running that con�icts with the Python interpreter input loop (Tkinter is special in that the Python
interpreter makes special provisions for checking Tk events thus no event loop must be run). IPython has
been developed to support running all the backends while accepting commands. Do not expect to be able
to use a matplotlib backend while using a di�erent windowing system within Python. Generally speaking,
di�erent windowing frameworks cannot coexist within the same process.

Since matplotlib takes its heritage from Matlab, it tends toward using more functions to build a plot
rather than many keyword arguments. Nevertheless, there are many plot parameters that may be set through
keyword arguments.

The axes command allows arbitrary placement of plots within a �gure (even allowing plots to be inset
within others). For cases where one has a regular grid of plots (say 2x2) the subplot command is used to
place these within the �gure in a convenient way. See one of the examples later for its use.

Generally, matplotlib doesn't try to be too clever about layout. It has general rules for how much spaces
is needed for tick labels and other plot titles and labels. If you have text that requires more space than that,
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It's up to you to replot with suitable adjustments to the parameters.
Because of the way that matplotlib renders interactive graphics (by drawing to internal memory and

then moving to a display window), it is slow to display over networks (impossible over dial-ups, slow over
broadband; gigabit networks are quite usable however)

2.6.2 matplot functions
The following lists most of the functions available within pylab for quick perusal followed by several examples.

basic plot types (with associated modifying functions)

acorr: plot autocorrelation function
bar: bar charts
barh: horizontal bar charts
broken_barh: a set of horizontal bars with gaps
boxplot: box and whisker plots
cohere: plot of coherence
contour:
contourf: �lled contours
csd: plot of cross spectral density
errorbar: errorbar plot
hist: histogram plot
implot: display image within axes boundaries (resamples image)
loglog: log log plot
matshow: display a matrix in a new �gure preserving aspect
pcolor: make a pseudocolor plot
pcolormesh: make a pseudocolor plot using a quadrilateral mesh
pie
plot: x, y plots
plot_date: plot using x or y argument as date values and label axis accordingly
polar
psd: power spectral density
quiver: vector �eld plot
scatter
semilogx: log x, linear y, x y plot
semilogy: linear x, log y, x y plot
specgram: spectrogram plot
stem
spy: plot sparsity pattern using markers
spy2: plot sparsity pattern using image
xcorr: plot the autocorrelation function of x and y

plot decorators and modi�ers

annotate: annotate something in figure
arrow: add arrow to plot
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axhline: plot horizontal line across axes
axvline: plot vertical line across axes
axhspan: plot horizontal bar across axes
axvspan: plot vertical bar across axes
clabel: label contour lines
clim: adjust color limits of current image
fill: make �lled polygons
grid: set whether grids are visible
legend: add legend to current axes
rgrids: customize the radial grids and labels for polar plots
table: add table to axes
text: add text to axes
thetagrids: for polar plots
title: add title to axes
xlabel: add x axes label
ylabel: add y axes label
xlim: set/get x axes limits
ylim: set/get y axes limits
xticks: set/get x ticks
yticks: set/get y ticks

�gure functions

colorbar: add colorbar to current �gure
figimage: display unresampled image in �gure
figlegend: display legend for �gure
figtext: add text to �gure

object creation/modi�cation/mode/info functions

axes: create axes object on current �gure
box: set axis frame state on or o�
cla: clear current axes
clf: clear current �gure
close: close a �gure window
delaxes: delete axes object from the current �gure
draw: force a redraw of the current �gure
figure: create or change active �gure
gca: get the current axes object
gcf: get the current �gure
gci: get the current image
getp: get a handle graphics property
hold: set the hold state (overdraw or clear?)
ioff: set interactive mode o�
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ion: set interactive mode on
isinteractive: test for interactive mode
ishold: test for hold mode
plotting: list plotting commands
rc: control the default parameters
savefig: save the current �gure
setp: set a handle graphics property
show: show the current �gures (for non-interactive mode)
subplot: create an axes within a grid of axes
subplot_adjust: change the params controlling the subplot positions
subplot_tool: launch the subplot con�guration tool

color table functions

autumn, bone, cool, copper, flag, gray, hot, hsv, pink, prism, spring, summer, winter
spectral

2.7 Plotting mini-Cookbook
2.7.1 customizing standard plots
The two tables below list the properties of data and text properties and information about what values they
can take. The variants shown in parentheses indicate acceptable abbreviations when used as keywords.
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Data properties
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Property Value
alpha Alpha transparency (between 0. and 1., inclusive)
animated True or False, facilitates faster animations (see wiki ani-

mation link for details)
antialiased (aa) Use antialiased rendering (True or False)
color (c) Style 1:

'b' -> blue
'g' -> green
'r' -> red
'c' -> cyan
'm' -> magenta
'y' -> yellow
'k' -> black
'w' -> white
Style 2: standard color string, eg. 'yellow', 'wheat'
Style 3: grayscale intensity (between 0. and 1., inclusive)
Style 4: RGB hex color triple, eg. #2F4F4F
Style 5: RGB tuple, e.g., (0.18, 0.31, 0.31), all values be-
tween 0. and 1.)

dash_capstyle one of 'butt', 'round', or 'projecting'
dash_joinstyle one of 'miter', 'round', or 'bevel'
data_clipping Clip data before plotting (if the great majority of points

will fall outside the plot window this may be much faster);
True or False

�gure �gure instance (to direct speci�cally to a existing �gure)
label A string optionally used for legend
linestyle (ls) One of '�' (dashed), ':' (dotted), '-.' (dashed dot), '-' solid
linewidth (lw) width of line in points (nonzero �oat value)
marker symbol:

'o' -> circle
'^','v','<','>' triangles: up, down, left, right respectively
's' -> square
'+' -> plus
'x' -> cross
'D' -> diamond
'd' -> thin diamond
'1','2','3','4' tripods: down, up, left, right
'h' -> hexagon
'p' -> pentagon
'|' -> vertical line
'_' -> horizontal line
'steps' (keyword arg only)

markeredgewidth (mew) width in points (nonzero �oat value)
markeredgecolor (mec) color value
markerfacecolor (mef) color value
markersize (ms) size in points (nonzero �oat value)
solid_capstyle one of 'butt', 'round', or 'bevel'
solid_joinstyle one of 'miter', 'round', or 'bevel'
visible True or False
xdata array (for x coordinates of data points)
ydata array (for y coordinates of data points)
zorder any �oating number; used to determine layering order of

plot data
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The following describes text attributes (those shared with lines are not detailed)

Property Value
alpha, color As with Lines
family font family, eg 'sans-serif','cursive','fantasy'
fontangle the font slant, 'normal', 'italic', 'oblique'
horizontalalignment 'left', 'right', 'center'
verticalalignment 'top', 'bottom', 'center'
multialignment 'left', 'right', 'center' (only for multiline strings)
name font name, eg. 'Sans', 'Courier', 'Helvetica'
position x, y position
variant font variant, eg. 'normal', 'small-caps'
rotation angle in degrees for text orientation
size size in points
style 'normal', 'italic', or 'oblique'
text the text string itself
weight e.g 'normal', 'bold', 'heavy', 'light'

These two sets of properties are the most ubiquitous. Others tend to be specialized to a speci�c task
or function. The following illustrates with some examples (plots are not shown) starting with the ways of
specifying red for a plotline

> > > x = arange(100.)
> > > y = (x/100.)**2
> > > plot(x,y,'r')
> > > plot(x,y, c='red')
> > > plot(x,y, color='#ff0000')
> > > lines = plot(x,y) # lines is a list of objects, each has set methods

for each property
> > > setp(lines, 'color', (1.,0,0)) # or
> > > lines[0].set_color('red') ; draw() # object manipulation example
> > > plot(y[::10], 'g>:',markersize=20') # every 10 points with large green triangles and

dotted line

And more examples specifying text:

> > > textobj = xlabel('hello', color='red',ha='right')
> > > setp(textobj, 'color', 'wheat') # change color
> > > setp(textobj, 'size', 5) # change size

2.7.2 implot example
You can duplicate simple use of the IRAF task implot like this:

> > > pixdata = pyfits.getdata('pix.fits')
> > > plot(pixdata[100], hold=False) # plots row 101
> > > plot(pixdata[:,200],hold=True) #overplots col 201
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2.7.3 imshow example
Images can be displayed both using numdisplay, which was introduced in the last tutorial and the matplotlib
imshow command:

> > > import numdisplay
> > > numdisplay.open()
> > > numdisplay.display(pixdata,z1=0,z2=1000)
> > > clf() # clears the current figure
> > > imshow(pixdata,vmin=0,vmax=1000)
> > > gray() # loads a greyscale color table
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The default type of display in Matplotlib �out of the box� has the Y coordinate increasing from top to
bottom. This behavior can be overridden by changing a line in the .matplotlibrc �le:

image.origin : lower

The .matplotlibrc that is the default on STScI unix systems (Solaris, Linux and Mac) has this already set
up. If you are using Windows, you will need to get the STScI default .matplotlibrc from one of the Unix
systems, or from the web.

imshow will resample the data to �t into the �gure using a de�ned interpolation scheme. The default
is set by the image.interpolation parameter in the .matplotlibrc �le (bilinear on STScI systems),
but this can be set to one of bicubic, bilinear, blackman100, blackman256, blackman64, nearest,
sinc144, sinc256, sinc64, spline16 and spline36. Most astronomers are used to blocky pixels that
come from using the nearest pixel; so we can get this at run-time by doing

> > > imshow(pixdata, vmin=0, vmax=1000, interpolation='nearest')

2.7.4 �gimage
figimage is like imshow, except no spatial resampling is performed. It also allows displaying RGB or RGB-
alpha images. This function behaves more like the IDL TVSCL command. See the manual for more details.

2.7.5 histogram example
Histograms can be plotted using the hist command.
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> > > pixdata[pixdata>256] = 256
> > > hist(pixdata,bins=256)

Duplicating the functionality of, for example, the IRAF imhistogram task will take a bit more work.
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2.7.6 contour example
To overplot green contours at levels of 100, 200, 400 and 800, we can do:

> > > levels = [100,200,400,800]
> > > imshow(pixdata,vmin=0,vmax=1000,origin='lower')
> > > contour(pixdata,levels,colors='1.0')
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2.7.7 subplot example
You aren't limited to having one plot per page. The subplot command will divide the page into a user-
speci�ed number of plot.

> > > subplot(211) # Divide area into 2 vertically, 1
horizontally and select the first plot

> > > plot(wave,flux)
> > > subplot(212) # Select second plot
> > > plot(wave,error.flat)
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2.7.8 readcursor example
Finally, it is possible to set up functions to interact with a plot using the event handling capabilities of
Matplotlib. Like many other GUIs, Matplotlib provides an interface to the underlying GUI event handling
mechanism. This is achieved using a callback function that is activated when a certain prescribed action is
performed. The prescribed action could be a mouse button click, key press or mouse movement. You can
set up a handler function to handle the event by registering the event you want to detect, and connecting
your callback function with the required event. This is getting a little bit ahead of ourselves here, since we
weren't going to explain functions until the fourth tutorial, but it's impossible to explain event handling
without it....

This is best explained using an example. Say you want to print the X and Y coordinates when you click
the mouse in an image. Start by displaying the image in an imshow() window:

> > > imshow(pixdata, vmin=0, vmax=200)

Then set up a handler to print out the X and Y coordinates. This will be run every time the mouse button
is clicked, until the �listener� function is killed (this actually de�nes a function, which will covered in more
detail later; don't worry about the details yet).

> > > def clicker(event):
... if event.inaxes:
... print event.xdata, event.ydata
...
> > >
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This is a very simple handler: it just checks whether the cursor is inside the �gure (if event.inaxes), and
if it it, it prints out the X and Y coordinates in data coordinates (i.e. in the coordinates as speci�ed by the
axes). If the cursor is outside the �gure, nothing is done.

Now we set up a �listener� by connecting the event we are looking for ('button_press_event') with the
function we will call (clicker).

> > > cid = connect('button_press_event', clicker)

The connect function returns a �connect id�, which we will use when we want to kill the listener.
Now, when we press the mouse button when we are in the �gure, we get the coordinates printed out on

our screen. This works even if we zoom the image, since we have requested the coordinates in data space,
so matplotlib takes care of determining the X and Y coordinates correctly for us. When we're done, we can
just do the following:

> > > disconnect(cid)

and we are no longer listening for button presses.
There are more details in the matplotlib manual.

2.8 Exercises
1. Using only Python tools, open the FITS �le fuse.fits, extract the �ux and error columns from

the table, and plot these against each other using plot(). Scale the �ux and error by 1.0e12 before
plotting.

2. Smooth pix.fits with a 31x31 boxcar �lter (see �rst tutorial) and make a contour plot at 90, 70, 50,
and 30, and 10% of the peak value of the smoothed image.

3. Repeat 2, except before generating a contour plot display the unsmoothed image underneath.

4. Change the colortable to gray and label your favorite feature with a mathematical expression

5. Save the result as a postscript �le and view it in your favorite postscript viewer

6. Extra credit: parroting the readcursor example, write a short callback function to display a cross cut
plot of a displayed image on a left mouse button click, and a vertical cut plot on a right button click
(overplotting the image). [Hint: this needs use of subplot(111, Frameon=False) to get overplotting on
images to work]
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3 More advanced topics in PyFITS, numarray and IPython
3.1 IPython
IPython is a souped up interactive environment for Python. It adds many special features to make interactive
analysis sessions easier and more productive. These features include:

• easy invocation of common shell commands with shell-like syntax (e.g., ls, cd, etc.)

• Alias facility for de�ning system aliases

• Complete system shell access (through ! and !! pre�xes)

• TAB completion

• Easy ways to �nd out information about modules, functions and objects.

• Numbered input/output prompts with command history

• User-extensible magic commands

• Session logging and restoring (through playback of logged commands)

• Background execution of Python commands in a separate thread

• Automatic indentation

• Macro system

• Auto parenthesis and auto quoting

• Flexible con�guration system allowing for multiple con�gurations

• Easy reimportation (useful for script and module development)

• Easy debugger access

• Syntax highlighting and editor invocation, easier to interpret tracebacks

• Pro�ler support

This tutorial will only touch a subset of its extensive features (IPython has its own, very complete manual:
see Appendix A for instructions on how to obtain it). When started (simply by typing ipython) the most
apparent di�erence from the standard Python interpreter is the prompt. Each line entered by the user is
numbered. Commands can be recalled through the standard up and down arrow keystrokes (if the readline
library is installed) as well as by number (shown later).

3.1.1 Obtaining information about Python objects and functions
IPython provides a few very handy ways of �nding out information about modules, functions, and objects.
Some examples:

In [10]: x = [1, 2] # create a short list

Typing ? before or after a name (module, variable, etc.) gives information about that module or object
including documentation included in the source code for that module or object (the �docstring�, discussed
later).
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In [11]: x?
Type: list
Base Class: <type 'list'>
String Form: [1, 2]
Namespace?: Interactive
Length: 2
Docstring:

list() -> new list
list(sequence) -> new list initialized from sequence's items

This shows a little info about the object.
If one types a TAB character after the object or module name with a period, IPython will list all the

possible contents of that module or object (i.e., its attributes or methods). One can then look at any
documentation available for these items using the ? feature. E.g.,

In [12]: x.<TAB>
x.__add__ x.__iadd__ x.__setattr__
x.__class__ x.__imul__ x.__setitem__
x.__contains__ x.__init__ x.__setslice__
x.__delattr__ x.__iter__ x.__str__
x.__delitem__ x.__le__ x.append
x.__delslice__ x.__len__ x.count
x.__doc__ x.__lt__ x.extend
x.__eq__ x.__mul__ x.index
x.__ge__ x.__ne__ x.insert
x.__getattribute__ x.__new__ x.pop
x.__getitem__ x.__reduce__ x.remove
x.__getslice__ x.__reduce_ex__ x.reverse
x.__gt__ x.__repr__ x.sort
x.__hash__ x.__rmul__
In [13]: x.append?
Type: builtin_function_or_method
Base Class: <type 'builtin_function_or_method'>
String Form: <built-in method append of list object at 0x15bcff0>
Namespace: Interactive
Docstring:

L.append(object) -- append object to end

This lists all the attributes and methods for lists. Generally you should ignore any names that begin with
underscore (the meaning of all these will be explained in the next tutorial). The next inquiry shows the
docstring info for the list append method.

These techniques can be used to inspect what's available within any Python object or module. One
caution: objects that use more sophisticated means of handling attributes and methods will generally not
show these by these inspection tools. So just because you don't see something doesn't mean it doesn't exist.
A good example is the data attribute for py�ts objects (something that will be covered in this tutorial).
There is such an attribute, but it won't be seen through the TAB completion mechanism here.

3.1.2 Access to the OS shell
Any system shell command may be executed by prepending it with ' !' E.g.,

In [14]: !ls
newfile.fits seq.fits pix.fits
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3.1.3 Magic commands
IPython has what it calls magic commands. These are special commands not normally part of Python. The
following lists the default set. Users may de�ne their own magic commands.

Magic Command Action
Exit Exit IPython without con�rmation
Pprint Toggle pretty printing on/o�
Quit same as Exit
alias De�ne an alias for a system command
autocall Make functions callable without typing parenthesis (de-

fault)
autoindent Toggle autoindent on/o� (default on)
automagic Make magic functions callable without having to type '%'

(default)
bg Run a job in the background, in a separate thread
bookmark Manage bookmark system (for directories)
cd Change directories
color_info Toggle color syntax highlighting (default on)
colors switch color scheme
con�g Show IPython's internal con�guration
dhist Print history of visited directories
dirs Return current directory stack
ed Alias to edit
edit Bring up editor and execute the resulting code
env List environmental variables
hist Print input history, most recent last
logo� Stop logging
logon Restart logging
logstart Start logging
logstate Print the status of the logging system
lsmagic List currently available magic functions
macro De�ne set of input lines as macro
magic Print info about magic function system
p Alias for Python print function
page Pretty print the object and display it through a pager
pdb Control the calling of the pdb interactive debugger
pdef Print the de�nition header of any callable object
pdoc Print the docstring for an object
p�le Print the �le where an object is de�ned
pinfo Provide detailed information about an object
popd Change to a directory popped o� the directory stack
pro�le Print currently active IPython pro�le
prun Run a statement through the Python code pro�ler
psource Print source code for object
pushd Push current directory on stack and change directory
pwd Return current working directory
r Repeat previous input
rehash Update the alias table with all entries in $PATH
rehashx Update the alias table with all executables in $PATH
reset Reset the namespace by removing all names de�ned by

user
run Run the named �le inside IPython as a program
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runlog Run �les as logs
save Save a set of lines to a given �lename
sc Execute a shell command and capture its output
sx Run a shell command and capture its output
system_verbose Toggle verbose printing of system commands on and o�
time Time execution of a Python statement or expression
unalias Remove alias
who Print all interactive variables with minimal formatting
who_ls Return sorted list of all interactive variables
whos Like who but with extra info about each variable
xmode Switch modes for exception handlers

The use of many of these is fairly obvious; for others consult the IPython documentation on their use.
IPython has default aliases for the following system commands: cat, clear, cp, less, mkdir, mv,

rm, rmdir, and many variants on ls (lc, ldir, lf, lk, ll and lx). The magic alias command allows
one to change or add to the list.

IPython saves the history of previous commands from one session to the next (the manual describes how
to keep di�erent session histories).

3.1.4 Syntax shortcuts
With autocall mode on, it means that it is not necessary to provide parentheses for functions that aren't
being assigned:

In [15]: pyfits.info 'pix.fits' # instead of pyfits.info('pix.fits')
------->pyfits.info('pix.fits')
Filename: pix.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 71 (512, 512) Int16

but note that this doesn't work:

In [16]: im = pyfits.getdata 'pix.fits'
__________________________________________________________

File "<console>", line 1
im = pyfits.getdata 'pix.data'

SyntaxError: invalid syntax

If one starts a line with a comma, every argument of a function is assumed to be auto quoted. E.g.:

In [17]:,pyfits.info pix.fits
------->pyfits.info('pix.fits')
Filename: pix.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 71 (512, 512) Int16

Note also that when IPython does this sort of autotransformation, it prints the command actually executed.
What is saved in the log �les is the proper Python syntax, not what you typed. For functions that expect
strings only, this allows near shell-like syntax to be used.
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3.1.5 IPython history features
Typing Control-p (or Control-n) after you typed something at the command line will match the closest
previous (or next) command in the history that matches what you've typed.

Previous input commands are available for re-execution (or other manipulation) by accessing special
variables. The variable In is e�ectively a list of the previous commands that can be indexed with the
number that matches the prompt. Slicing works as well. The following example show how to select a set of
previous lines for re-execution:

In[18]: print 1
1

In[19]: print 2
2

In[20]: print 3
3

In[21]: print 4
4
In [22]: exec In[18:20]+In[21]
1
2
4

The previous lines are also accessible through variables _i<n> and _ih<n>. E.g.,

In [23]: print _i21
print 4

The return value of statements that return a value (and thus often print or display something to the output)
are stored in similar variables. The most recent is in a variable _, the next most recent in __, and likewise
for ___. For example:

In[24]: 6+9
15
In[25]: print _
15

Since assignments don't return anything, they are not saved this way. Like input commands, output values
are saved in Out and can be indexed, or the variables _o<n> or _oh<n>. This feature may use extra
memory since it is saving references to things that normally would be deleted so the feature can be turned
o� (see the later discussion on memory usage for a better understanding of what happens).

By de�ning a .ipythonrc �le in each working directory, one can customize what IPython does for a
session started in that directory. Additional IPython features will be illustrated throughout the rest of the
tutorials.

3.2 Python Introspection
Snake navel gazing? No, not quite. This term refers to the capabilities that Python provides for �nding
out information about Python objects from the objects themselves (IPython makes use of these facilities).
Python has very extensive tools for doing this. Only a couple of the simplest will be mentioned here.
By using the Python dir() function, one can examine the �contents� of various Python entities including
modules, objects and classes. For example using dir() on a module will list variables, functions, and classes
de�ned within the module (but not indicate what they are; in the list there is no visual way of distinguishing
a function from a variable�except by use of standard naming conventions in some cases). As an example
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dir(pyfits) lists over a hundred such items. This can be useful if you can't quite remember the name of a
method or attribute. By itself, don't expect to understand everything you see (or even most). One can use
dir() on these items in turn to �nd out about them.

The Python function type() can be used on any object to tell you what type it is. From its use you can
tell if something is an integer, string, list, function, or speci�c object.

Every Python module, function, class and method has a provision for a special string that is available for
inspection. This string is called the �docstring�. If it exists, it is the __doc__ attribute of the object. Here
are a few examples:

> > > x = [1,2] # a simple python list
> > > print x.__doc__
list() -> new list
list(sequence) -> new list initialized from sequence's items

This shows the docstring for the list creator function.

> > > print pyfits.__doc__ # print the pyfits module docstring
A module for reading ....
....
> > > print pyfits.getdata.__doc__
...

With these few features it is usually possible to �nd out quite a bit about any object.

3.3 Saving your data
At the moment, there are no comparable functions to the IDL save and restore commands. There are
ways of saving and restoring Python objects (which goes by the odd name of pickling) but its use is far from
being convenient as the IDL save command. We are working on a command to make saving and restoring
data much easier (and similar to how it is done in IDL), but given the richness of the forms that Python
objects can be generated, it is not possible to ensure that all objects can be saved. The future command
will allow saving of all reasonably saveable objects (for example, open �les objects cannot be saved).

3.4 Python loops and conditionals
3.4.1 The for statement
Like many other languages Python has a for statement. Its use is a little di�erent than most are likely used
to seeing. Here is an example:

> > > pets = ['dog','cat','gerbil','canary','goldfish','rock']
> > > for pet in pets: print 'I have a pet', pet
I have a pet dog
I have a pet cat
I have a pet gerbil
I have a pet canary
I have a pet goldfish
I have a pet rock

The for pet in pets syntax means that a loop will be performed for each item in the list pets. In order,
the item is taken from the list pets, assigned to the variable pet, which can be used within the loop.
Anything that is considered a Python sequence can be used after the in. This includes lists, strings, tuples,
arrays and anything else (including user-de�ned objects) that satisfy certain sequence requirements (actually,
it's more general than that, iterator objects, not described here can be use used as well). In fact, the exact
same approach is used for performing �counted� loops:
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> > > for i in range(3): print i
0
1
2

The function range(n) e�ectively generates a list of n integers starting at 0 (it's the analog of arange(n)).
It turns out that it doesn't actually generate a list that long (so worries about using up lots of memory for
performing a large number of loops are unfounded).

3.4.2 Blocks of code, and indentation
The form of having the code looped over on the same line as the for statement is atypical. Normally the
statements being looped over follow on separate lines. So what is used to delimit these blocks? Begin/end
statements like IDL? Curly braces ({}) like C and Java? No, nothing other than simple indentation. When
code following a statement that expect a block of code (such as for) is consistently indented more than the
statement starting the block, it is considered to identify the block of code. For example:

> > > for i in range(3):
... x = i*i
... print x
...
0
1
4

Note that when one is in interactive mode, that using a statement that starts a block causes the interpreter
to prompt with ... and typing an empty line terminates the block (that's not necessary within scripts
or programs, returning to a previous level of indentation or ending the �le is su�cient). The amount of
indentation is entirely up to you. It can be 1 space or 40, so long as it is consistent. Tabs may be used, but
their use is not recommended. If you do use them, use only tabs for indentation. A mixture of tabs and
spaces is bound to cause confusion since di�erent tools show tabs with varying amounts of equivalent spaced.
Most sensible editors allow tabs to be automatically converted to spaces with the appropriate con�guration
(the next tutorial will provide information about editors and available features for Python).

This aspect of Python astonishes some, but most that actually try it �nd it refreshing. The structure
that you see is the real structure of the program. Cutting and pasting such code into di�erent levels of
indentation is not usually a problem if you use an editor that supports changing indentation for multiple
lines of code.

3.4.3 Python if statements
Python if statements are simple:

> > > x = 0
> > > if x==0:
... print �x equals 0�
...
x equals 0

The if statement allows optional elif (short for �else if�) and else clauses:
> > > if x==1:
... print �x equals 1�
... elif x==0:
... print �x equals 0�
... else:
... print �x equals something other than 1 or 0�
...
x equals 0
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3.4.4 What's True and what's False
Python now has explicit True and False values. But it also has standard rules for determining what is
considered true and false for other data types. Numeric data types are considered false if equal to 0 and true
for all other values. The Python value None is always considered false. Empty sequences and dictionaries
are considered false (e.g., the empty string).

> > > if �: print 'True' # nothing will be printed
...
> > > if '0': print 'True'
...
True

As for user-de�ned objects, Python permits the code to de�ne what is true or not. Or whether a test for
truth is even permitted; numpy arrays may not be used as truth values in most cases:

> > > from numpy import *
> > > x = arange(9)
> > > if x: print 'True'
[...]
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

Error!

3.4.5 The in crowd
Another use for the in operator encountered in the for statement is as a test of whether an object is a member
of a sequence. This can considerably simplify logical tests as the following example shows.

> > > if x in ['dog', 'cat', 'goldfish', 'gerbil', 'canary']: print x

3.5 Advanced PyFITS Topics
[This section can be skipped by non-astronomers]

The PyFITS functions introduced in the �rst tutorial are su�cient for simple manipulation of FITS �les,
but if you need to have more control over the handling of the FITS �le, you will need to use some of the
more advanced features of the module.

3.5.1 Header manipulations
Normally most people will �nd the means of using and updating headers described in the �rst tutorial
su�cient for most tasks. There are more methods available for header objects that allow adding commentary
keywords (HISTORY, COMMENT, or 'blank' keywords). The following show their use.

> > > hdr = pyfits.getheader('pix.fits')
> > > hdr.add_history('This is a test history card')
> > > hdr.add_comment('A test comment card',after='date')
> > > hdr.add_blank(�,before='comment')
# To delete a keyword just use the del statement
> > > del hdr['date']

Note that while headers behave in a number of respects like dictionaries, they aren't dictionaries and don't
support all dictionary methods.

To have complete control over header cards and their placement of header cards it is necessary to access
the header as a �cardlist� object. With this representation one can use list manipulations to place each card
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as desired, and use card methods to control the exact contents of any card. By this interface it is possible
to make the card use any string desired, even if it is not legal FITS or one of the standard conventions (to
write such illegal cards into an output �le requires speci�cally instructing the writeto method or function
to force illegal cards into the �le; see the following section on noncompliant FITS data).

See the PyFITS documentation for the full set of methods and examples of use.

3.5.2 PyFITS Object Oriented Interface
The object oriented interface permits more �exible handling of FITS �les. The object functionality mirrors
that available from the functions. The chief advantages are:

• Files are not repeatedly opened and closed for each data access (but the objects should be explicitly
closed now with the close() method).

• Allows creating FITS headers from scratch (i.e., not having to use an existing �le's header).

• There is more �exibility in how data are accessed. One can easily determine how many extensions exist
and access all the headers directly without making many getheader function calls.

As for the latter, it is possible to read just portions of an image from disk (rather than reading the whole
image), and it is possible to open �les using memory mapping as a data access mode. Consult the PyFITS
User's Guide for details on how to do both of these.

Simple example:

> > > hdus = pyfits.open('fuse.fits') # returns an HDUList object
> > > tabhdu = hdus[1] # the table extension
> > > hdr = tabhdu.header # getting the header from the HDU
> > > tab = tabhdu.data # and the table

The data attribute of the HDU object contains the data regardless of the type of extension (a record array
for tables, a simple array for image extensions). The HDUList may be indexed by number or by extension
name (and optionally EXTVER). For example:

> > > hdus = pyfits.open('acs.fits')
> > > sci = hdus['sci',1] # EXTNAME=SCI, EXTVER=1

HDULists can be written to a new �le, or updated if the �le was opened in update mode.

> > > hdus.writeto('temp.fits') # write current form to new file
> > > hdus.flush() # update opened file with current form

3.5.3 Controlling memory usage
O�hand, it sounds convenient to read a whole FITS �le into memory as an HDUlist in one step, but some
may wonder about the demands this puts on memory. If the �le is memory mapped, then that isn't a
problem. However, if the default mode of using regular I/O to read FITS �les is being used it turns out
that only the headers are loaded. Until one actually refers to the data attribute the data are not read into
memory (it's done with smoke and mirrors). By using this, it is possible to control what is in memory. The
following illustrates how (the next tutorial unveils some of the details of how memory is handled in general
in Python).

> > > ff = pyfits.open('nicmos.fits')
> > > sum = 0. # plan is to sum all SCI extension images
> > > for hdu in ff[1:]: # skip primary
... if hdu.header['extname'].startswith('SCI'):
... sum = sum + hdu.data # now data is read in
... hdu.data = None # done with it, delete it from memory
> > > ff.close()
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If the images are too large to comfortably process in memory, the section attribute can be used to read
subsets of the image. An example that sums all the values in sections of an image without loading it all in
memory at once:

> > > ff = pyfits.open('pix.fits') # returns an HDUList object
> > > hdu = ff[0] # Get first (and only) HDU
> > > sum = 0L # for keeping a running sum of all image values
> > > # now read data 64 lines at a time (although small, it illustrates the principle)
> > > for i in range(8):
... subim = hdu.section[i*64:(i+1)*64,:]
... sum = sum + subim.sum()
...
> > > print sum
> > > ff.close()

This can be done more elegantly using image iterators described later.
HDULists can be created and manipulated entirely in memory without any reference to any input or

output �les.
PyFITS is also capable of handling variable-length table entries, random groups, and ascii table exten-

sions.

3.5.4 Support for common FITS conventions
PyFITS supports the CONTINUE convention automatically on reading �les that use it (this permits the
use of string values longer than permitted in a standard card). To enable its usage in a header just provide
string values to keywords that are longer than standard FITS allows. The HIERARCH convention is now
supported. The INHERIT convention is not supported. It is not planned to be in the base py�ts module
but some convenience functions or objects may be provided in the future to support it.

3.5.5 Noncompliant FITS data
Normally PyFITS tries to handle FITS �les that don't meet the FITS standard as best it can when reading
them in (and make the most reasonable interpretations possible of any ambiguities). (If users encounter
problems in this regard, particularly with FITS data that is widely used, please let us know so we can adjust
PyFITS to handle it). In contrast, PyFITS normally takes a very strict view toward the FITS �les it writes.
By default, PyFITS will not permit non-compliant FITS �les to be written. When the errors in the input
�le have obvious corrections, PyFITS will automatically make these corrections in writing the header to a
new �le with either of the �x options (e.g., output_verify='fix' or output_verify='silentfix'. When
there is ambiguity about what should be done, PyFITS will raise an exception. It is possible to change this
behavior, i.e., to warn or raise errors on bad input �les, and to permit FITS non-compliant headers to be
written. Some illustrations:

> > > hdu = pyfits.PrimaryHDU() # create an HDU from scratch
> > > hdu.header.update('P.I.','Hubble') # Try creating an illegal keyword
ValueError: Illegal keyword name 'P.I.'
# force into header an illegal keyword
> > > card = pyfits.Card().fromstring(�P.I. = 'Hubble�')
> > > hdu.header.ascardlist().append(card)
> > > hdu.writeto('pi.fits') # try writing to file
Output verification result:
HDU 0:

Card 4:
Unfixable error: Illegal keyword name 'P.I'

[...]
raise VerifyError
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VerifyError
# now force it to file
> > > hdu.writeto('pi.fits', output_verify='ignore')
> > > hdus = pyfits.open('pi.fits')
> > > print hdus[0].header.ascardlist()
[...]
P.I. = 'Hubble'
> > > hdus[0].header['p.i.']
'Hubble'
> > > hdus.verify()
[repeat of previous error message]

The verify() method (and the output_verify keyword) has the possible values of: 'ignore', 'fix',
'silentfix',' exception' (default for output), and 'warn'.

3.6 A quick tour of standard numpy packages
The standard numpy distribution comes with auxiliary modules that will be quickly outlined here (all these
are described in considerably more detail in the numpy book). There are also a vast number of modules
availble in the scipy package that will not be covered here.

3.6.1 random
The random module is used to generate arrays of random values with a variety of distributions as well
as seed-related functions. The following lists the available functions with a couple examples at the end.
Functions that return random values all take a shape argument for the desired array shape.

set_state(state): sets the state of the random number generator (as gotten from get_state). This allows
one to repeat random sequences for testing purposes.

get_state(): return the current state used by the random number generator

rand(d1,d2,...,dn): returns Float array of uniformly distributed random numbers between 0. and 1 (not
including) with shape (d1, d2,...,dn).

random(shape): variant on rand that takes a shape tuple.

uniform(low=0., high=1., size=None): returns uniformly-distributed Float values between speci�ed low and
high (which themselves may be arrays)

randint(min, max, shape=[]): like uniform, but returns int values.

permutation(n): returns all n values from 0 to n-1 with order randomly permuted

shuffle(sequence): Randomly permute the items of any sequence. Array argument must be 1-D.

Other supported distributions are: (Float) beta, chi_square, exponential, f, gamma, gumbel, lapace,
lognormal, logistic, multivariate_normal, noncentral_chisquare, noncentral_f, normal, pareto,
power, randn, rayleigh, standard_cauchy, standard_exponential, standard_gamma, standard_normal,
standard_t, triangular, vonmises, wald, weibull, and (Int) binomial, geometric, hypergeometric,
logseries, multinomial, negative_binomial, poisson, zipf. In general, the parameters for these
distributions may be arrays.

Examples:

> > > import numpy.random as ran
> > > ran.rand(3,3) # trivial example
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Example of generating a Poisson noise image of a Gaussian PSF

> > > y, x = indices((11,11))
> > > y -= 5 # example of �augmented operator, subtract 5 from y and place result in y
> > > x -= 5
> > > im = 1000*exp(-(x**2+y**2)/2**2) # noiseless gaussian
> > > nim = ran.poisson(im)
> > > print nim

3.6.2 �t
This provides the common FFT functions:

fft(a, n=None, axis=-1 ): Standard 1-d �t (applies �t only 1-dimension of multidimensional arrays)

ifft(a, n=None, axis=-1 ): Standard inverse 1-d �t

rfft(a, n=None, axis=-1 ): Only accepts real inputs and returns half of the symmetric complex transform.

irfft(a, n=None, axis=-1 ): Only accepts real inputs and returns half of the symmetric complex transform.

fftshift(x, axes=None): Shift 0-frequency component to center of spectrum

ifftshift(x, axes=None): Reverse of �tshift

fftfreq(n,d=1.0 ): Return the DFT sample frequencies

fft2(a, s=None, axes=(-2,-1)): 2-d �t.

ifft2(a, s=None, axes=(-2,-1)): 2-d analog of i�t

rfft2(a, s=None, axes=(-2,-1)): 2-d analog of r�t

fftn(x, s=None, axes=None): N-dimensional �t of x

ifftn(x, s= None, axes=None): inverse of �tn

irfftn(x, x=None, axes=None): N-dimensional analog of r�t

hfft(x, n=None, axis=-1): n-point real-valued �t from �rst half of Hermitian-symmetric data

ihfft(x, n=None, axis=-1): inverse of h�t

Example:

> > > from numpy.fft import fft
> > > x = sin(arange(1024)/20.) + ran.normal(0,1,size=1024)
> > > # sine wave with gaussian noise
> > > from pylab import *
> > > plot(abs(fft(x)))
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3.6.3 convolve
The convolve package is not part of numpy but instead is part of scipy.stsci; since it contains operations
frequently used by astronomers it is described here. This package is included with the stsci_python distri-
bution so that it is not necessary to install scipy in order to use it. This includes the following smoothing
and correlation functions:

boxcar(data, boxshape, output=None, mode='nearest', cval=0.): standard 1-d and 2-d boxcar smoothing.

convolve(data, kernel, mode=FULL): 1-d convolution function

convolve2d(data, kernel, output=None, �t=0, mode='nearest', cval=0.): 2-d convolution with option to
use FFT.

correlate(data, kernel, mode=FULL): 1-d correlation function

correlate2d(data, kernel, output=None, �t=0, mode='nearest', cval=0.): 2-d correlation function with
option to use FFT

These functions have various options that determine the size of the resulting array (FULL, PASS, SAME,
VALID)

3.6.4 linear algebra
This includes the common linear algebra operations. The module is numpy.linalg. The functions available
are (details and examples in numpy book):
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cholesky(a): Cholesky decomposition

det(a): determinate

eigvals(a): return all eigenvalues of matrix a

eig(a): return all eigenvalues, eigenvectors of matrix a

eigvalsh(u): same as eigvals but expects hermitian matrix

eigh(u): same as eig but expects hermitian matrix

generalized_inverse(a, rcond=1e-10 ): aka pseudo-inverse or Moore-Penrose inverse

Heigennvalues(a): the real positive eigenvalues of a square, Hermitian positive de�nite matrix.

Heigenvectors(a): likewise, the eigenvalues and eigenvectors for Hermitian matrices

inva): Inverse of a

lstsq(a, b, rcond=1e-10 ): Linear least squares.

pinv(a): psuedo inverse of a

solve(a, b): Find solution to linear equation de�ned by ax = b

svd(a, full_matrices=0 ): Singular Value Decomposition of a

tensorinv(a, ind=2 ): Find tensor inverse of a

tensorsolve(a, b, axes=None): Find solution to multi-index linear equation

3.6.5 Masked Arrays
The masked array facility allows associating data masks with arrays that will be appropriately propagated
when using ufuncs (though many of the add-on modules, e.g., fft or matplotlib, will not handle the masks
implicitly). The use of masks impacts performance (and memory as well), but can be handy if systematic
use of masks is required. Note that use of IEEE-754 special values (e.g., Inf, NaNs) can be a faster way of
representing bad data values. See section 3.6.7.

The masked array facility is found in numpy.ma. The details of its use are too long to describe here. Only
a simple example will be shown.

> > > from numpy import *
> > > x = arange(3) # regular array
> > > y = ma.array([1, 2, 3], mask = [0, 1, 0]) # masked array, 2nd element invalid
> > > x+y
array(data =
[ 1 999999 5],
mask =
[False True False],

fill_value=999999)

Details of its use can be found in the Guide to Numpy book (Section 8.6).
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3.6.6 ieespecial values
This capabilities are now part of core numpy; there are several tools for handling IEEE-754 special �oating
point values (NaNs, Inf, etc.). You can test whether an array has any of these values (and generate a mask
array showing the locations), and to set locations in an array to these values. See the Guide to Numpy book
for details on these functions (Sections 9.1.4, 9.5.5) A brief overview is given here regarding special values.
Note that one should not use typical equality tests for NaN values since the IEEE standard requires that
two �oats that have NaN values are not considered equal when compared. Thus you must use special
functions to do such comparisons. For example:

> > > x = arange(3.)
> > > y = x / 0
Warning: divide by zero encountered in divide
Warning: invalid value encountered in double_scalars
> > > y
array([ nan, inf, inf])
> > > isinf(y)
array([False, True, True], dtype=bool)
> > > isnan(y)
array([ True, False, False], dtype=bool)
> > > isfinite(y)
array([False, False, False], dtype=bool)

But note that you should not do this to �nd NaN values:

> > > y == nan
array([False, False, False], dtype=bool)

To set special values, simply use assignment:

> > > x = arange(6.)
> > > x[[1,3]] = nan
> > > x[0] = inf
> > > x
array([ inf, nan, 2. , nan, 4. , 5. ])

3.6.7 Customizing numeric error handling
The default behavior of numpy is to print warnings when numerical errors are encountered in computations
but not to stop or raise an exception. It is possible to change this, however. One can use the seterr function
to do this as the following examples illustrate:

> > > x = arange(3.)
> > > y = x/0
Warning: divide by zero encountered in divide
Warning: invalid value encountered in double_scalar
> > > oldsettings = seterr(all='ignore')'
> > > y = x/0

The return value of seterr is a dictionary that holds the previous values. To reset them simply do:

> > > seterr(**oldsettings) # the odd syntax will be explained later
# when defining functions is covered

{'divide': 'ignore', 'invalid': 'ignore', 'over': 'ignore', 'under': 'ignore'}
> > > y = x/0
Warning: divide by zero encountered in divide
Warning: invalid value encountered in double_scalars
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This example showed how to change the behavior for all error types. It is possible to set each error type
behavior individually: divide (divide by 0 errors), invalid (computations that produce NaN), under�ow,
and over�ow. The possible choices for each are: 'ignore', 'warn' (print a warning), 'raise' (raise an
exception), or 'call' (call a user-supplied function). For example:

> > > seterr(divide='warn', invalid='raise', underflow='ignore', overflow='call')

This will thus result in exceptions if any NaNs are produced, a warning if divide by 0 occurs, nothing if
under�ows are encountered, and �nally, it will call the user supplied function that was set with seterrcall()
if an over�ow was encountered (see the Guide to Numpy for details, section 9.1.4). Note that this seterr also
a�ects the behavior with integer computations with regard to divide by 0.

3.7 Intermediate numarray topics
3.7.1 The Zen of array programming
The trick to making Python data processing e�cient for large data sets is the avoidance of loops over small
amounts of data (or worse, individual array points). Not that you can't do it. By all means, go ahead. But
don't be surprised if the program runs very slowly. Since Python is interpreted, there is a certain overhead to
each interpreted Python statement. E�ciency is achieved by avoiding large number of repetitions of Python
statements that do relatively little work and instead using operations that operate on the whole array. The
following is a simple illustration using the data from pix.fits.

> > > im = pyfits.getdata('pix.fits')
> > > # Using the Fortran or C approach
> > > sum = 0L
> > > for j in range(512):
... for i in range(512):
... sum = sum + im[j, i] # remember that index order!!
print sum
28394234
> > > Using the array approach
> > > print im.sum()
28394234

The time taken by the �rst is over 30 times longer than the second.
Avoiding loops requires a di�erent mindset. Some algorithms are relatively easy to code in an array

formulation, others are not quite as easy, and some are very di�cult. At some point the complexity of
avoiding loops is not worth the trouble and consideration should be given to accepting the overhead of loops
or writing the algorithm in C. The skill of avoiding loops is a somewhat acquired art and it helps to see lots
of examples to learn all the tricks that are involved. Those experienced at using IDL are likely familiar with
most of the techniques. Most of the existing array functions are there to facilitate the avoidance of loops.
By far, the most useful function in this regard is where(). The solutions to more advanced examples will
show examples of some of the techniques.

3.7.2 The power of mask arrays, index arrays, and where()
The simplest and usually the most e�cient way of conditionally operating on a subset of points is to use
mask arrays (i.e., Boolean arrays). One can use such mask arrays as an index into an array. For example,
to set all points in im that are greater than 100 to 100:

> > > im[im>100] = 100

In a similar vein the following will select all those values greater than 100 and generate a new array of those
values:

> > > bigvalues = im[im>100]
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The following illustrates how to use mask arrays to do a crude cosmic ray rejection algorithm (i.e., for non-
astronomers, rejecting pixels that have much higher values than are found in other exposures of the same
target):

> > > bigdiffmask = abs(im1-im2) > nsigma*sqrt(min(im1, im2))

The mask can now be used to set the values of the image with the larger value to the value of the other
image.

> > > im1mask = bigdiffmask & (im1>im2)
> > > im1[im1mask] = im2[im1mask]
> > > im2mask = bigdiffmask * (im2>im1)
> > > im2[im2mask] = im1[im2mask]

Some problems need use of explicit index arrays instead, either because some functions only return index
arrays (E.g., argsort()) or the indices will be manipulated or processed in some way. As previously men-
tioned, index arrays can be used as indices as well (hence their name!). The where() function is used to
turn a mask into index arrays.

Use with one-dimensional arrays is the most straightforward. What isn't quite so obvious is that where()
does not return an array, but rather a tuple of arrays (the reasons for this are explained a little bit later).
Thus to manipulate the array(s) returned by where, one needs to index the tuple with the appropriate index.
This isn't necessary if the tuple is to be used as an index to another array. To take a very simple example:

> > > x = arange(10)
> > > ind = where(x > 5)
> > > x[ind] # this works
array([6, 7, 8, 9])
> > > ind.shape # this doesn't
[...]
AttributeError: 'tuple' object has no attribute 'shape'
> > > ind
(array([6, 7, 8, 9],)
> > > ind[0].shape # this does
(4,)
> > > len(ind) # this is effectively the number of dimensions
1
> > > len(ind[0]) # this is the number of points and is likely what was desired
4

Having where() return tuples of arrays is more awkward in the 1-d case, however, it is the most natural
solution for multidimensional arrays, and there is the side bene�t that 1-d and n-d arrays are handled the
same way. No doubt that new users will bump into this issue at least a few times.

When multidimensional arrays are used, where() returns an index for each dimension as part of the tuple.
So, using the standard M51 image data:

> > > indices = where(im > 300)
> > > indices
(array([ 31, 31, 32, ..., 505, 506, 506]),
array([319, 320, 318, ..., 208, 206, 207]))

> > > im[indices[0], indices[1]]=300 # the explicit approach of using
# the component index arrays

> > > im[indices] = 300 # the �magic� approach, exactly equivalent to the explicit form

The examples that follow will illustrate how mask and index arrays may be used to avoid explicitly looping
over all elements in an array. You may note that in many cases one could use index or mask arrays. Generally
speaking, if mask arrays will do, use them instead. Only when index arrays are much smaller than the original
arrays will they be faster than using a mask array.
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3.7.3 1-D polynomial interpolation example
We expect interpolation routines to soon become available so the following example should not be necessary
to follow to do interpolation. But it remains a good illustration of how it is possible to avoid looping over
array elements. Suppose one has a pair of arrays that represent x,y functional pairs. The x array represents
x samples for some smooth function and the y array are the values of that function at those x values. We
presume that the x values are in increasing order (if they weren't already, use of sort functions could easily
reorder the x and y arrays to make that so). Given a third array, xx, of x values for which interpolated values
of the function are desired, determine the interpolated values. To keep it reasonably simple, this example
will use linear interpolation.

> > > x = arange(10.)* 2
> > > y = x**2
> > > import numpy.random as ran
> > > xx = ran.uniform(0., 18., size=(100,)) # 100 random numbers between 0 and 18
> > > xind = searchsorted(x, xx)-1 # indices where x is next value below that in xx
> > > xfract = (xx - x[xind])/(x[xind+1]-x[xind]) # fractional distance between x points
> > > yy = y[xind] + xfract*(y[xind+1]-y[xind]) # the interpolated values for xx

The same approach can be generalized to higher-order interpolation functions or multiple dimensions.

3.7.4 Radial pro�le example
Suppose one wants to compute the average radial pro�le for a galaxy (say, M51). The basic problem is to
bin image values into radial distance bins and average all the values that fall into the same bin. How can
one average all the values at the same radial bin without looping through all radial values? The following
shows a way that is faster (but not as fast as one could do in C).

> > > y, x = indices((512,512)) # first determine radii of all pixels
> > > r = sqrt((x-257.)**2+(y-258)**2)
> > > ind = argsort(r.flat) # get sorted indices (could use sort

# if not needed to arange image values too
> > > sr = r.flat[ind] # sorted radii
> > > sim = im.flat[ind] # image values sorted by radii
> > > ri = sr.astype(int16) # integer part of radii (bin size = 1)

Things get trickier here; �nd numbers in same radius bin by looking for where radius change value and
determining distance between changes

> > > deltar = ri[1:] - ri[:-1] # assume all radii represented
# (more work if not)

> > > rind = where(deltar)[0] # location of changed radius
> > > nr = rind[1:] - rind[:-1] # number in radius bin
> > > csim = cumsum(sim, dtype=float64) # cumulative sum to figure out sums for each radii bin
> > > tbin = csim[rind[1:]] - csim[rind[:-1]] # sum for image values in radius bins
> > > radialprofile = tbin/nr # the answer
> > > semilogy(radialprofile)
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Well, almost. A careful look at what happens shows that the 0 pixel radius bin is excluded from the �nal
array. It isn't hard to prepend the single value to radial pro�le.

This is a case where doing it with array operations isn't a great deal simpler than it would be in C.
Performance isn't as good largely because of the cost of doing a sort on radius values (not necessary in C).
On the other hand, you don't need to learn C, don't need to deal with the hassles of compiling and linking
(particularly if you want to share the code), don't need to deal with pointer errors in C, and so forth. So it
is often still desirable to solve problems this way.

3.7.5 Random ensemble simulation example
Given a coin, what are the odds of tossing 2 heads in a row before 2 tails given respective probabilities of p
and q for heads and tails? This can be computed analytically, but serves as a reasonably simple example of
a Monte-Carlo simulation that can be done with arrays. The general approach to solving this problem is to
iterate over every coin toss, but to start with an ensemble of coins. As the iteration continues, some of the
coins will hit one or the other termination condition and fewer cases will remain to iterate. For this case, it
is necessary to keep the state of the previous coin toss.

> > > p = .4
> > > n = 1000000 # initial ensemble size
> > > n2heads = 0; n2tails = 0 # totals for each case
> > > import numpy.random as ran
> > > prev = ran.rand(n) < p # true if heads, false if not
> > > while n>0:
... next = ran.rand(n) < p
... notdone = (next != prev)
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... n2heads += sum(prev & next,dtype=int64) # careful about sums!

... n2tails += sum(logical_not(prev | next),dtype=int64)

... prev = next[notdone]

... n = len(prev)

... print n

...
480311
239661
[...]
1
1
0
> > > n2heads, n2tails
(336967, 663033)

This works e�ciently so long as many points remain. For the last few iterations where there are few points,
the overhead of doing array computations will increase ine�ciency. So long as there are relatively few of
these, this algorithm should have speeds comparable to those of C. (By the way, the analytically-derived
probability is p2(1 + q)/(1− pq).)

3.7.6 thermal di�usion solution example
The following shows how one can apply an iterative solution for Laplace's equation. We construct a 500x500
grid and set a 100x100 pixel boundary condition of 100 at the center and 0 at the edges.

> > > grid = zeros((500,500),float32)
> > > prevgrid = grid.copy()
> > > grid[200:300,200:300] = 100.
> > > done = False
> > > i = 0
> > > while not done:
... i +=1
... prevgrid[:,:] = grid # just reuse arrays
... # new value is average of 4 neighboring values
... grid[1:-1,1:-1] = 0.25*(
... grid[:-2,1:-1]
... + grid[2:, 1:-1]
... + grid[1:-1,:-2]
... + grid[1:-1,2:])
... grid[200:300,200:300] = 100.
... diffmax = abs(grid - prevgrid).max()
... print i, diffmax
... if diffmax < 0.1: done = True
1 25.0
2 12.5
[...]
243 0.0996131896973

3.7.7 Finding nearest neighbors
Suppose one has a list of coordinates (lets presume simple x,y Cartesian) and we want to �nd the nearest
coordinate to each of the coordinates in the list. If the coordinates are provided as x, y arrays of equal length
it is possible to use broadcasting to do this quite easily:

> > > x = array([1.1, 1.8, 7.3, 3.4])
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> > > y = array([2.3, 9.3, 1.5, 5.7])
> > > deltax = x - reshape(x,(len(x),1)) # computes all possible combinations
> > > deltay = y - reshape(y,(len(y),1)) # could also use subtract.outer()
> > > dist = sqrt(deltax**2+deltay**2)
> > > dist = dist + identity(len(x))*dist.max() # eliminate self matching
> > > # dist is the matrix of distances from one coordinate to any other
> > > print argmin(dist, axis=0) # the closest points corresponding to each coordinate
[3 3 3 1]

This approach works well so long as there aren't too many points (since it creates arrays that have that
number squared entries)

3.7.8 Cosmic ray detection in single image
This example uses a local STScI package and ndimage to identify cosmic rays (ndimage is part of scipy.stsci
but is also available in stsci_python)

> > > import imagestats
> > > import pyfits
> > > import ndimage as nd
> > > chip = pyfits.getdata('acs.fits','sci',1)
> > > # Perform morphological closing and opening to filter image of any
> > > # source smaller than (5,5).
> > > # A size of (3,3) still left some residuals for ACS data
> > > closechip = nd.grey_closing(chip,size=(5,5))
> > > occhip = nd.grey_opening(closechip,size=(5,5))
> > > # compute sigma of background
> > > sigma = imagestats.ImageStats(occhip,nclip=3).stddev
> > > # create mask using difference between original input and filtered image.
> > > mask = (chip - occhip) > sigma

3.7.9 Source extraction
Extract magnitudes and positions of sources in image (similar to daofind)

> > > import pyfits
> > > import imagestats
> > > import ndimage as nd
> > > sci, hdr = pyfits.getdata('acs2.fits','sci',1,header=True)
> > >
> > > # compute background value, clipping out bright sources
> > > scistats = imagestats.ImageStats(sci,nclip=3)
> > >
> > > # create a binary image flagging all sources in image
> > > # with values greater than the mean of the background
> > > # For crowded fields, extra care/work will need to be
> > > # done to separate blended sources.
> > > sci_clip = sci >= scistats.mean
> > >
> > > label each source with its own ID index
> > > sci_labels,sci_num = nd.label(sci_clip)
> > >
> > > # Compute a sum for each object labeled and return as a list
> > > counts = nd.sum(sci,sci_labels,range(sci_num))
> > >
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> > > # Get position of object using its center of mass
> > > pos = nd.center_of_mass(sci,sci_labels,range(sci_num))
> > >
> > > # Retrieve photometric keywords from image header
> > > photflam = hdr['photflam']
> > > photzpt = hdr['photzpt']
> > > # Convert counts to magnitudes for each object
> > > mag = photzpt - 2.5*log10(array(counts)*photflam)

3.7.10 Other issues regarding e�ciency and performance
Even if a problem can be cast into a purely array manipulation form, one may encounter other barriers to
performance. The most likely is that you will run into memory limitations. If the algorithm involves compu-
tations on large arrays, and many temporary or ancillary arrays are needed as part of the computation, then
one can easily run out of available memory, or if not virtual memory, real memory, leading to unacceptable
system paging. If the algorithm essentially is �ufunc�-like, that is computations are performed independently
on pixels, then the array can be segmented and iterated over the segments. For two dimensional arrays in
IDL this typically meant iterating over rows in images. That can be done in numarray as well, but there
are other approaches that can be used. Even when algorithms are not strictly independent of neighboring
pixels, so long as the algorithm is reasonably local, then one can iterate over segments that overlap to the
necessary degree. Many problems fall in this category. A solution of this sort will be illustrated in tutorial
4.

Some algorithms result in many array creations and destructions. Even though in theory no memory is
being consumed over the long run, it is possible to eventually fragment the available memory as to prevent
allocating arrays of su�cient size (this is a problem with IDL and many other systems as well). In such cases
it makes sense to reuse existing arrays (if sizes don't change) in iterations. This can be done by assigning to
an existing array through slice assignment. For example:

> > > im = 2*im # replaces the array im used to refer to
# with a new array

> > > im[:,:] = 2*im # writes back into the array im
> > > im *= 2 # also reuses im array

# (but be careful of type downcasts!)
> > > multiply(im, 1, im) # use of optional output array

3.7.11 Customizing numeric error handling
By default, numarray notices if any numerical errors have occurred and warns you. It is possible to change
that behavior for each kind of error individually for for all (divide-by-zero, invalid result, over�ow, and un-
der�ow). There are three choices: ignore (no warnings), warn (print a warning), or raise (raise an exception).
This works for integers as well as �oats and complex numbers. See the numpy book for details on how to
change the default behavior (section 9.1.4, 9.55)

Exercises
1. Read each of the image extensions in the FITS �le tut3f1.fits using the object-oriented interface,

assemble an image cube from the 2-d images in each of the extensions (they are all the same size), and
without loops, generate a 2-d result that contains the maximum value at that pixel for the whole stack
of images. Display the result. The answer will be obvious if you did it correctly.

2. Add the keyword/value pair IMNUM= <extension number> to each of the headers tut3f1.fits right
after the TARGET keyword. While you are at it, add a history keyword. Verify the headers have been
updated with your favorite FITS header viewing tool (i..e, not PyFITS)
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3. Using the random number module, generate a million random points with x,y coordinates between 0,1.
What fraction of these points lie within a radius of 1 from the origin? How close is this to the expected
result?

4. The irregularly sampled Discrete Fourier Transform (DFT) is given by

F (ω) =
∑N−1

n=0
fne−iωn∆t

Given an array of time samples fn, desired frequencies to sample ωm(not necessarily uniformly spaced),
and∆t = 1 compute the DFT at those frequencies without using any loops.
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4 Programming in Python
4.1 Introduction
This tutorial will focus on writing Python programs and scripts that can be used to aid or augment interactive
analysis. If you �nd yourself repeating the same pattern of commands more than a few times, or need to
write an algorithm that involves more than a few lines of Python, it would be silly not to write a script or
function to do the same.

4.1.1 Namespaces
First, let's have a quick look under the hood. When you start up Python, there are a few environmental
objects set up that you can interrogate with the dir() function.

> > > dir()
['__builtins__', '__doc__', '__name__']

As you can see, the dir() function returns a list of 3 items. The contents of the strings are:

__builtins__ is a module
__doc__ is of type NoneType
__name__ is a string

The__name__ object is just a character string, which we can print out:

> > > print __name__
__main__

So when we're running the Python interpreter, __name__ = '__main__'. Remember this.
Since__builtins__ is a module, we can �nd out its attributes by using the dir() function:

> > > dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError',
'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError',
'Exception', 'False', 'FloatingPointError', 'FutureWarning',
'IOError', 'ImportError', 'IndentationError', 'IndexError',
'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError',
'NameError', 'None', 'NotImplemented', 'NotImplementedError',
'OSError', 'OverflowError', 'OverflowWarning',
'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',
'RuntimeWarning', 'StandardError', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError', '_',
'__debug__', '__doc__', '__import__', '__name__', 'abs', 'apply',
'basestring', 'bool', 'buffer', 'callable', 'chr', 'classmethod',
'cmp', 'coerce', 'compile', 'complex', 'copyright', 'credits',
'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'execfile',
'exit', 'file', 'filter', 'float', 'frozenset', 'getattr', 'globals',
'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'intern',
'isinstance', 'issubclass', 'iter', 'len', 'license', 'list',
'locals', 'long', 'map', 'max', 'min', 'object', 'oct', 'open',
'ord', 'pow', 'property', 'quit', 'range', 'raw_input', 'reduce',
'reload', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type',
'unichr', 'unicode', 'vars', 'xrange', 'zip']
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This exciting-looking list has all the types, objects and functions that are part of the 'built-in' objects.
Although they don't show up when you use dir(), they are normally part of every namespace.

There are disadvantages of trying to import too many things into your namespace. The biggest problem
occurs when one of the modules has a function that is the same as a built-in function. That's usually not
good practice, and most modules avoid that, but it does happen. More likely is when you have two modules
that use the same name for a function or object. To illustrate:

> > > from numpy import *

The namespace now contains a very large number of items:

> > > dir()
['ALLOW_THREADS, 'BUFSIZE', 'CLIP', 'ERR_CALL', ERR_DEFAULT',
...
'where', 'who', 'zeros', 'zeros_like']

Over four hundred if you are counting. Now let's do something simple:

> > > x = arange(2.)
> > > sin(x)
array([ 0. , 0.84147098])
# Now lets import the math module and retry the last command
> > > from math import *
> > > sin(x)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
[...]
TypeError: Only length-1 arrays can be converted to Python scalars

What happened? Turns out the math module also de�nes sin(). When we did from math import * we
overwrote the numpy version. The strange error message occurs since the math module asks the argument
if it can turn itself into a �oating point number if isn't one already. Numpy can in one instance (for rank-0
or 1 element-1-d arrays) but raises an exception in all other cases.

When you do overwrite functions or objects, the results can be very confusing. That's why it is recom-
mended that you avoid the from zzz import * style within modules and scripts. If the module name is
very long and inconvenient to type, it is very acceptable to import as a di�erent name, e.g.,

> > > import numarray as np
> > > np.sin(arange(2.))

When using something like numpy or pylab interactively it is �ne to use the from zzz import style since
each of these packages essentially form the bulk of your working environment (but do note that there are
some collisions between pylab and numpy that aren't compatible; these will be discussed later). But when
working interactively, be careful about using that style with many other modules unless you are con�dent
that there are no name collisions.

If you must overload (i.e., replace) the name of a builtin object or function it is still possible to use it.
Suppose you want to de�ne an open function within your module. PyFITS does this; however, PyFITS does
not allow its open function to come into the importing namespace as open. Instead it is aliased to fitsopen
to prevent name collisions with the builtin open. Look up the __all__ attribute for modules to see how
that is accomplished). By overloading open doing so you can't use open to open a �le using the builtin. But
this does accomplish the same thing:

> > > f = __builtins__.open('junk.txt','w')

When you import a module as follows

> > > import pyfits
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then only py�ts appears in your namespace, and the py�ts module object has its own, local namespace for
all it contains.

> > > dir()
['__builtins__', '__doc__', '__name__', 'pyfits']

So your PyFITS functionality is restricted to its own namespace:

> > > dir(pyfits)
['ASCIITNULL', 'AllHDU', 'BinTableHDU', 'Boolean', 'Card',
'CardList', 'ColDefs', 'Column', 'CorruptedHDU', 'DELAYED',
'ExtensionHDU', 'FALSE', 'FITS_FatalError', 'FITS_SevereError',
'FITS_Warning', 'FITS_rec', 'GroupData', 'GroupsHDU', 'HDUList',
'Header', 'ImageBaseHDU', 'ImageHDU', 'Memmap', 'PrimaryHDU',
'Section', 'TAB', 'TRUE', 'TableBaseHDU', 'TableHDU',
'UNDEFINED', 'Undefined', 'UserList', 'ValidHDU', 'VerifyError',
'_Card_with_continue', '_ErrList', '_File', '_FormatP',
'_FormatX', '_Group', '_KeyType', '_LineSlice', '_OnePointAxis',
'_SinglePoint', '_SteppedSlice', '_TempHDU', '_VLF', '_Verify',
'_WholeLine', '__builtin__', '__builtins__', '__credits__',
'__doc__', '__file__', '__name__', '__version__', '_eval',
'_floatFormat', '_get_tbdata', '_iswholeline', '_makep',
'_normalize_slice', '_pad', '_tmpName', '_unwrapx', '_wrapx',
'blockLen', 'chararray', 'commonNames', 'convert_ASCII_format',
'convert_format', 'exceptions', 'fits2rec', 'fix_table',
'get_index', 'isInt', 'key', 'keyNames', 'maketrans',
'memmap_mode', 'ndarray', 'new_table', 'num', 'objects', 'open',
'operator', 'os', 'padLength', 'parse_tformat', 'python_mode',
're', 'rec', 'rec2fits', 'sys', 'tdef_re', 'tempfile',
'tformat_re', 'types']

Now we have access to all of PyFITS's functionality, and there's no confusion with built-in functions. The
only down side is that you have to prepend each function or attribute with pyfits. to access it. But it does
make for clearer code; there's no ambiguity as to where the attribute or function you're using comes from.

You should be aware that the names that appear in the local names space when you do from py�ts import
* do not contain all the names present in the module namespace for two possible reasons. First, Python
automatically excludes all names beginning with _. Secondly, the module can de�ne __all__ with a list of
names that it does not wish to be imported into the local namespace when the from zzz import * form is
used (this is how py�ts excludes open)

4.2 Functions
4.2.1 The basics
As in many programming languages, functions are a way to do the same thing repeatedly but with di�erent
values (or arguments). They save typing the same code over again. Basic function declarations in Python
are very simple as illustrated by the following example:

def cube(x):
�'take the cube of x�'
return x*x*x

This illustrates that functions are de�ned with a def statement, followed by the name of the function, and
then a comma-delimited list of arguments enclosed in parentheses. The argument list is optional, but the
parentheses aren't. After the argument tuple, there is a colon to indicate that Python expects the body of
the function either on the same line or in an indented block in the following lines. Functions take an optional
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docstring. If you provide the docstring, many tools can be used at runtime (as previously shown) to display
it. Functions use a return statement to return a value (but return statements are optional; if the end of the
function is reached with no return, the function automatically returns a None value). Finally, functions can
be passed as arguments or assigned to other variables:

> > > cube(3)
27
> > > cube(2.2)
10.648000000000003
> > > cube()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cube() takes exactly 1 argument (0 given)
> > > cube('2')
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 3, in cube

TypeError: can't multiply sequence by non-int
> > > cube.__doc__
'take the cube of x'
> > > calias = cube # calias points to the same function 'object'
> > > calias(3)
27
> > > def integrate(function, start, stop):
... �'very crude integration function�'
... total = 0
... for value in range(start,stop):
... total += function(value)
... return total
...
> > > integrate(cube,1,10)
2025

The argument of the cube function can be anything that supports the * operator. (Technically, it must
implement a __mul__ method; see the next tutorial to �nd out more about this). So, for example, we can
use it with numpy arrays

> > > data = arange(10)
> > > data
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
> > > data3 = cube(data)
> > > data3
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])

4.2.2 Function argument handling
Is this a �ve minute argument or the full half hour?
(www.mindspring.com/~mfpatton/sketch.htm)

Python provides many conveniences to make argument handling �exible. There are two kinds of arguments
possible; �positional� and �keyword�. The distinction can be a bit confusing depending on whether you are
de�ning arguments or using them. This is illustrated by the cube example. The parameter x is a positional
parameter since it can be speci�ed simply by putting a value in the order expected (with only one argument,
order isn't really an issue in this case). But one can also use keyword syntax for positional arguments:

> > > cube(x=3)
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But that doesn't change the fact that it is a positional argument.
Arguments may have default values speci�ed for them. E.g.,

def integrate(function, start=0, stop=10):

All the arguments of integrate are positional arguments, but the last two have default values, thus

> > > integrate(cube)

will use 0 for start and 10 for stop since they were not speci�ed for this call. All the following variants are
acceptable given the de�nition of integrate:

> > > integrate(stop=5, start=1, function=cube)
> > > integrate(cube, 3) # stop will be 10

But this is not legal:

> > > integrate(cube, start=2,7)

because it is not permitted to use a positional argument form after a keyword form speci�cation (Python no
longer is sure that you are adhering to positional order once you start using the keyword form). When you
use the keyword form to refer to positional arguments, order no longer matters for that value and following
keyword-like arguments. You also cannot follow arguments de�nitions that have a default speci�ed with
arguments de�nitions that have no defaults (think about why that cannot be permitted).

Variable numbers of arguments are easy to handle as well as arbitrary keywords. Here is an example of
the �rst:

def average(*args):
total = 0.
for arg in args:

total += arg
return total/len(args)

The syntax for args indicates that a variable number of positional parameters are expected. These will be
stu�ed into a variable named args (you can choose any legal name you wish) as a list. Likewise, one can do
something similar for keywords:

def makedict(**keywords):
�'Make a dictionary from a function keyword=value args list�'
newdict = {}
for keyword in keywords.keys():

newdict[keyword] = keywords[keyword]
return newdict # note that we could have simply returned keywords!

This syntax indicates that all keyword argument speci�cations will be stored in a dictionary as keyword:value
pairs with the dictionary referred to by the variable name keywords (name is up to you).

All three forms may be combined:

def wild_and_crazy_function(mode, *filenames, **options):

This function expects one mandatory positional keyword, an optional list of �lenames, and keyword form
for options (whether the values in the list of �lenames are acceptable or the keywords used are permitted
must be handled in the function code).

76



4.3 Python scripts
First, a little clarifying terminology. A script is typically invoked from the operating system command line,
though if no arguments need to be passed, then scripts are easily run from the various Python interpreters.
Functions are just that, they take arguments and return values, and can be used in expressions. Modules
are Python �les that can contain script-like code. It is possible to write modules that are both useful
in a scripting context and for importing functions, classes, and objects. Python also has a higher level
organization of code called packages. All these elements will be described in this tutorial. While it is
possible to de�ne functions and classes interactively, it is normally easier to de�ne them in a module with
an editor (see Appendix E for a link to Python-friendly editors). Python scripts, at their simplest level,
just consist of code that one might have typed at the command line. It is a way of creating a batch �le of
commands that can be executed every time it is run. On Unix systems, if the �rst line of the �le contains
#!/usr/bin/env python or acceptable variants, and the �le is marked as executable, then the command
can be invoked by just typing the name of the �le. (The #! combination is sometimes called 'shebang'; see
http://catb.org/~esr/jargon/html/S/shebang.html), a good way to remember the syntax.)

For example, if one creates a �le called test containing:

#!/usr/bin/env python
print 'script starting up'
for item in [1,4,9]:

print item

followed by changing the mode of the �le (on Unix) to be executable:

% chmod a+x test

Then the script can be executed by typing./test (or just test if its directory is in the standard path).
Where the #! functionality is not supported, one executes scripts instead by typing

% python test
script starting up
1
4
9

Scripts with no command line options can be invoked from any of the Python interpreters by using the
execfile() function. E.g.,

> > > execfile('test')
script starting up
1
4
9

IPython provides the convenient run command to do the same:

In[1]: run test
script starting up
1
4
9

Later we will revisit scripts that expect command line arguments. Scripts can contain loops and conditional
code (and even function and class de�nitions for their own internal use).
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4.4 Modules
Let's get back to our cube example. Instead of having to type out all that code, we can put it in a module.
Modules correspond to Python �les. They are either simple Python source �les (and in that case must have
a .py, �lename extension) or they are shareable object �le (.so �les for Unix and .dll �les for MS Windows).

Modules can contain all sorts of things: any number of function de�nitions, class de�nitions, and variable
de�nitions. Modules can also contain any amount of code that is executed when the module is imported
(initialization, etc.). Modules can import other modules.

Module importing is only done once within a Python session. If another module has imported a given
module, Python notes that internally; any subsequent import of that module checks to see if the import has
already been done and if so, just refers to the module already imported. When debugging a module you
have written it is necessary to use the reload() function in order to force the module to be imported again
if changes are made to it:

> > > import mymodule
[test fails]
[edit mymodule.py]
> > > reload(mymodule)
[retest module]
[and so on]

Reloading is simple when you are only dealing with one module. If you have a larger software system that
involves multiple modules you have written that depend on each other, it is also important to reload all other
modules that depend on the module you've changed and reloaded. The reloading of the modules must be
done in the order that the modules are imported. Generally, when there are many such dependencies, it is
easier to just start with a fresh Python session. Reloading does not work with modules that are not written
in Python (.so and .dll modules).

Make a module called cube.py with the following lines:

def cube(x):
�'Take the cube of x�'
return x*x*x

As previously noted there are several ways to import modules:

> > > import cube
> > > import cube as mm # use mm as name for cube
> > > from cube import * # import all exposed names into local namespace
> > > from cube import cube # only import specified items into local > > > namespace

When debugging a module, it is most useful to use one of the �rst two forms since reloading does not update
the objects in the local namespace with the new de�nitions. Pay special heed to this or you will wonder why
your edits to your module do not appear to have any e�ect on the problems you are seeing!

Now we can use our cube function; assume we did

> > > import cube

Here's what happens when we try to use it:

> > > cube(3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: 'module' object is not callable

The reason is that the import statement imported the cube module into the local namespace, but the cube
function lives in the cube namespace. So if we want to use the cube function, we have to do:
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> > > cube.cube(3)
27

Let's put another line in to see what the value of the __name__ attribute is from inside cube:

def cube(x):
�'Take the cube of x�'
print __name__
return x*x*x

Save, and then do

> > > reload(cube)
<module 'cube' from 'cube.py'>
> > > cube.cube(3)
cube
27

Now__name__ is equal to the enclosing namespace, which in this case is the function cube. This gives us a
mechanism for using modules both as shell commands and as Python modules to be imported. Let's add
some lines to cube.py:

#!/usr/bin/env python
import sys
def cube(x):

�'Take the cube of x�'
print __name__
return x*x*x

if __name__ == '__main__':
_nargs = len(sys.argv)
if _nargs != 2:

print 'Usage: cube x'
else:

print cube(float(sys.argv[1]))

When you use a module from the shell, the __name__ object is equal to '__main__', so the code in the
conditional block is executed. To pass arguments to the cube function when used as a standalone module,
we use the sys.argv attribute; this is a Python list whose �rst element is a string containing the name of the
module, while subsequent list elements are the following whitespace-delimited elements turned into strings.
Since cube() doesn't like strings, we have to turn the argument into a �oat before evaluating the cube.

Now we can exit Python and do:

machine> python cube 5
__main__
125.0

which demonstrates that we can use our cube.py module from the command line, and from inside Python
we can do

> > > import cube
> > > cube.cube(3)
cube
27
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4.5 Exception handling
Python has some nice support for exception handling, but it takes a bit of getting used to if you're not familiar
with this kind of approach. Languages that don't have exception handling built in (e.g. FORTRAN, C)
tend to have code that is sprinkled with code like this:

ratio = 0.0;
if (x == 0) {

printf(�Divisor = 0\n�);
} else {

ratio = y/x;
}

You trap the condition that would lead to an error, and then go on and execute the code knowing that the
error won't occur. In Python (and C++, Java and other more modern languages), an error will �throw an
exception�, which you can then handle. So the equivalent code in Python would look like this:

ratio = 0.0
try:

ratio = y/x
except ZeroDivisionError:

print 'Divisor = 0'

The try/except syntax has the advantage that what you want to do appears �rst, and the exception handling
appears later so you don't have to read past a lot of error trapping code to �nd out what a particular block
of code is doing.

When an exception occurs, the program stops and Python looks for a handler to deal with the exception.
If the exception occurs during the execution of a function call and there is to handler in the function,
the function immediately returns and passes control and the exception to its calling block. If there is an
appropriate handler there, it can catch the exception and deal with it, otherwise it stops execution and
passes control and the exception back up to its calling block, and so on, until a suitable exception handler
is found. If no handler is found to deal with the exception, Python prints an error message and returns to
the interpreter prompt (or if the error occurred in a script called from the shell, the script halts, an error
message is printed and control passes back to the shell).

The except block �catches� the exception so that no other exception handlers (including the one built
into the Python interpreter) will see it. If you want to catch an exception, do some processing (for example,
print something informative), and then propagate the exception further up the chain, your code can throw
the exception for something else to catch by using the raise statement:

try:
[do some processing]

except SomeError:
[respond to this particular error condition]
raise SomeError # now let something else handle the error

It is also possible to set up a clean-up handler to make sure that a certain block of code is executed whether
an exception occurs or not by using the try/finally syntax. For example:

f = open('thisfile.txt','r')
try:

[do something with the file]
finally:

f.close()

The finally block is executed even if the try block throws an exception that would cause Python to
terminate processing.

Python provides a large number of exception types so that your code can respond to the speci�c exception
thrown. It is usually not a good idea to catch every kind of exception, for example, by using something like
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try:
[do stuff]

except:
[respond to every type of exception]

because it makes it di�cult to debug exactly what happened; have your code respond to speci�c exceptions
if you need it to, and let Python print an error message so that you get some feedback as to the type of
exception thrown, and where it occurred.

Finally, you can end your Python session by raising a SystemExit exception.

4.6 Garbage (cleaning up after yourself)
Something we have glossed over throughout is how the memory used by Python objects is handled. Users
of C or similar languages are used to having to explicitly allocate and free memory for new objects. That
generally isn't necessary for Python (nor IDL or Java). So what does happen to that large array you created?
Does it stay around forever until you end your Python session? Well, it depends. The simple answer is that
it stays around as long as something is using it, and as soon as nothing is using it, Python frees the memory
it uses. That sounds simple, but what does it mean exactly? If you recall, it was mentioned that variables
are not the objects themselves, but only contain references to objects. Python keeps track of all things that
refer to an object. Once it notices that nothing refers to the object, it deletes the object and it frees the
memory it uses.

In a generic sense, this sort of automatic memory management is often called�garbage collection�. The
system Python uses is called reference counting and it is considered a fairly primitive form of garbage
collection (compared to what Java uses, for instance). Even so, it has some signi�cant advantages, generally
works reasonably well, and it is comparatively easy to understand.

When one deals with large memory objects (such as astronomical images), it pays to have some un-
derstanding of what is going on with regard to memory management, otherwise you are bound to run into
situations when you run out of memory, and you don't understand why you ran out of memory. The primary
rule to understand is that if you want to remove an image from memory, make sure nothing refers to it. This
can sometimes be more subtle than one realizes. Let's start with simpler cases and move to more subtle
cases.

Assume all cases start with creating an image array as follows:

> > > im = pyfits.getdata('pix.fits') # now an image sits in memory

Case 1:

> > > im = 0 # now im points to a memory location with a zero in it

Case 2:

> > > del im # same effect as Case 1, since there is not even a variable im anymore

Note that by reassigning the variable im to point to the scalar 0, nothing refers to the image. As soon as
the reassignment is done, Python decreases the reference count for the image array, notices that it is now 0,
and deletes it immediately (one advantage of this approach is that the memory is freed immediately, unlike
more sophisticated garbage collectors).

Case 3:

> > > sim = im
> > > im = 0 # image is not deleted, sim still refers to it
> > > sim = 0 # now it is freed

Case 4:
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> > > sim = im[:1,:1]
> > > im = 0 # image data buffer not deleted, as slice has a reference to the data buffer
> > > sim = 0 # now it is deleted

In this case, even if the slice is a minuscule part of the array (1x1 array), the whole array bu�er still has a
reference to it, and is not deleted until the slice is deleted.

The fact that numpy allows many views into the same object means that the object will not be deleted
until all the views are removed.

Case 5:

> > > mylist = [1, 'hello', im]
> > > im = 0 # image not deleted, list still contains a reference
> > > mylist[2] = 0 # now it is deleted

In other words, if you save references to the image in any data structure (lists, tuples, dictionaries, object
attributes, etc), the array will not be deleted until those references are removed.

Case 6:

> > > imshow(im)
> > > im = 0 # image is not deleted!
> > > cla() # now it is!

This illustrates a more subtle case. What may not be apparent is that when matplotlib displays an image,
it saves a reference to it (how do you think it manages to be able to resample the image when you resize
the window?) You must force matplotlib to remove that reference (cla(), which clears the plot, happens
to do that). This points to a potential problem, that is, use of modules that somehow retain references to
objects you pass to functions or objects, and where it may not be obvious that is happening.

Case 7:

> > > list1 = [1, im]
> > > list2 = [list1]
> > > list1[0] = list2
> > > im = list1 = list2 = 0 # what happens to this case?

Here we have set up a cyclic reference. The list created for list1 refers to the image, and also has a reference
to list2 after we de�ne list2. The list de�ned for list2 refers to the �rst list. We can remove the references
by im to the image, and list1 and list2 to the lists that were created. However these two lists still have
references to each other even if the variables no longer do, so these lists won't be deleted as a result, right?
(and thus, the image they contain won't either). Well it depends. In much older versions of Python, they
wouldn't be, but version 2.2 and later detect when there are cyclic references with no connection to any
variable, and it does delete these.

When you are dealing with large memory objects, or when you create large numbers of objects within
loops, it pays to understand when they are being deleted and when they aren't.

4.7 Miscellany:
Here are a few topics that don't �t into any of the previous sections, but are of general interest.

4.7.1 Interactive programs
Say you have a Python program where you want to prompt the user for a value to be used in processing.
This can be handled by the raw_input() function. Going back to our cube example, we could handle the
case of no argument being provided to the script (signalled by the fact that sys.argv has length 1) by
prompting the user for a value:
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#!/usr/bin/env python
import sys
def cube(x):

�'Take the cube of x�'
return x*x*x

if __name__ == '__main__':
_nargs = len(sys.argv)
if _nargs == 1:

x = raw_input("Enter number to be cubed: ")
else:

x = sys.argv[1]
print cube(float(x))

raw_input always returns a string, so you have to do the conversion from a string to a number of you're
expecting a numeric input.

4.7.2 Text Handling
A lot of people use Perl for text handling, but Python has its own strengths in this area. For example, you
can read a text �le into a list object, one line per element using the readlines() function:

> > > f = open('login.cl','r')
> > > flist = f.readlines()
> > > flist[0]
'# LOGIN.CL -- User login file for the IRAF command language.\n'

We can turn strings into individual words by using the split method of strings:

> > > words = flist[0].split(' ')
> > > words
['#', 'LOGIN.CL', '--', 'User', 'login', 'file', 'for', 'the', 'IRAF',
'command', 'language.\n']

Now we could reverse the order of the words:

> > > words.reverse()
> > > words
['language.\n', 'command', 'IRAF', 'the', 'for', 'file', 'login', 'User', '--',

'LOGIN.CL', '#']

And we can join them back up again:

> > > flist[0] = ' '.join(words)
> > > flist[0]
'language.\n command IRAF the for file login User -- LOGIN.CL #'

Why you would want to do this is questionable, but it does illustrate the power of Python's text handling
capabilities. To quickly review what methods strings have, just type:

> > > dir(�)

4.7.3 String formatting
So how does one customize the printing out of numbers, particularly �oating point numbers? In Python
you can de�ne a format string that is very similar to format descriptions in C. The format string is applied
through use of the % operator. A few examples will explain best:
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> > > x = 1100003
> > > 'maximum value = %f' % x
'maximum value = 1100003.000000'
> > > 'maximum value = %g' % x
'maximum value = 1.1e+06'
> > > 'min = %d, max = %d' % (3, 7.2)
'min = 3, max = 7'

The % operator when used with a string as the �rst argument expects either a single value or a tuple of
appropriate values as the second argument (with the length matching the number of format elements in the
format string). The following table summarize the di�erent formatting codes.

Conversion Code Meaning
d, i Signed decimal integer
o Unsigned octal (alternate form uses leading zeros)
u Unsigned decimal

x, X Unsigned hexadecimal (lower/upper case) (alternate form: leading 0x/0X)
e, E Floating point exponential (lower/upper case)
f, F Floating point decimal
g, G Same as e,E if exponent > -4 or less than precision, 'f,F' otherwise
c Single character
r String (implicitly converts any Python object using repr()
s String (implicitly converts any Python object using str()
% Results in literal %

The code characters that di�er only by case a�ect the case of the output result. The codes d and i are
equivalent.

Conversion codes can be pre�xed with the following optional items (in the order noted)

1. A mapping key as a parenthesized string of characters that is a key in the dictionary used (see example
below)

2. One or more conversion �ags (see table below)

3. Minimum �eld width (see documentation for use of *)

4. Precision given as a '.' followed by the precision (see documentation for use of *)

Flag Meaning
# Use alternate form (where applicable)
0 Pad numeric values with 0

(a space) insert space before positive numbers or empty strings
- Left adjust converted value (overrides 0 if also speci�ed)
+ Always use a sign character (+/-)

The following example illustrates a few of the more advanced formatting features. Note the use of the
dictionary to populate named elements in the format string. This is quite handy for complex strings,
particularly where the contents may change the number or order of formatted items in later versions of the
program.

> > > '%(employee)s: ID = %(ident)08d, salary = %(salary)10.2f' % \
{'salary':33333.3, 'employee':'John Doe', 'ident':13}
'John Doe: ID = 00000013, salary = 33333.30'
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4.7.4 More about print

If you place a trailing comma on the print statement line, that will suppress the newline normally appended
to the printed string. E.g.,

> > > print 'hello' ; print 'there'
hello
there
> > > print 'hello', ; print 'there
hello there

You can also redirect the printed output to any '�le-like' object as follows:

> > > f = open('mylogfile.txt','w') # open file for writing
> > > print > > f, 'test line for file' # write to file

4.7.5 Line continuations
Python has no speci�c limit on the length of a line of code. Generally it is a good idea to limit line lengths
to less than 80 characters or less (some prefer 72). Lines are continued in two basic ways:

• By ending the line with a backslash '\' (before any comment).

• By use of an unclosed parenthesis, bracket or braces.

The latter is illustrated by some examples:

x = (1 +
2)

y = {2:4,
'Ted':5,
(2,3):7}

z = 'hello there'[
2:5]

4.7.6 Variable name conventions
Apart from not being allowed to use variables with reserved names like try or import, there aren't many
restrictions on the names of variables that you can use in Python other than the names must only contain
alphanumeric characters, '_', and not start with a digit. There is a convention that variable, attribute,
method, or class names names that begin with a single '_' are considered private and not part of the public
interface of the module or class. So while there's nothing preventing you from accessing these variables
or functions, it usually isn't wise since such private elements may change in future versions by changing
their meaning (and classes and methods changing their interface) or even disappearing. Names that begin
underscores will not normally appear in the local namespace when using the from mymodule import * form
of importing.

4.7.7 Division
Normally, if you divide an integer by an integer in Python, the result is truncated. So 2/4 results in zero,
while 2.0/4.0 results in 0.5. However, this will change with Python v3.0 when division of integers will result
in �oating point values. Buy using this special import statement, you can cause Python to use its future
division behavior now (and avoid having to check or change your scripts and modules when that happens!):

> > > 2/4
0
> > > from __future__ import division
> > > 2/4
0.5
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Note that by using this special import, numpy will also change the behavior of division. Also realize that
this import only a�ects the module that uses it. Those that don't will continue with the current default
behavior. Python has de�ned the operator // to implement integer (truncating) division so that capability
remains available.

4.7.8 Implicit tuples and tuple assignment
Whenever you type a comma-separated list of variables, Python interprets it as a tuple. So if you type:

> > > x = 1,2,3,4,5
> > > type(x)
<type 'tuple'>

Python also applies the same rule on the left side of assignment statements meaning that one can assign to
elements of tuples by assigning a identically sized tuple on the right hand size:

> > > x,y,z = 2,5,6

and x will be set to 2, y to 5 and z to 6.

4.7.9 What if your function needs to return more than one value?
The standard idiom in Python is to return a tuple of the multiple values. For example:

> > > def powers(x):
.... square = x*x
.... cube = x*x*x
.... fourth = x*x*x*x
.... return square, cube, fourth

> > > powers(3)
(9, 27, 81)

Combined with tuple assignment, this makes for a convenient way of handling the multiple values:

> > > square, cube, fourth = powers(3)

In C, if you want to return more than one value, you have to create a struct, or change what one of the
arguments points to. In IDL you would either return a structure or provide the extra return values as extra
arguments.

Implicit tuples also make it easy to swap values without using a temporary value:

> > > x, y = 10,6
> > > x,y = y,x
> > > x,y
(6, 10)

4.7.10 Equality versus identity
Items that satisfy the equality test (==) are not necessarily identically the same object. If you wish to test
whether two variables or reference refer to the exact same object, use the is operator:

> > > x is y
False
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4.8 Python module overview
Standard Python comes with a large number of modules. Here's just a sample of some of them:

Module(s) Use
sys Information about Python itself (path, etc.)
os Operating system functions
os.path Portable pathname tools
shutil Utilities for copying �les and directory trees
�lecmp Utilities for comparing �les and directories
glob Finds �les matching wildcard pattern
fnmatch Tests �lename against wildcard pattern
re Regular expression string matching
time Time and date handling
datetime Fast implementation of date and time handling
doctest, unittest Modules that facilitate unit tests
pdb Debugger
pro�le Code pro�ling (to �nd bottlenecks in performance)
pickle, cpickle, marshal, shelve Used to save objects and code to �les
getopt, optparse Utilities to handle shell-level argument parsing
math, cmath Math functions (real and complex). Numarray has all these,

but these are faster for scalars
random Random generators (likewise)
gzip read and write gzipped �les
struct Functions to pack and unpack binary data structures
StringIO, cStringIO String-like objects that can be read and written as �les (e.g.,

in-memory �les)
types Names for all the standard Python types

There are many other modules dealing with process control, language parsing, low-level Unix interfaces, and
particularly many network, web, and XML libraries that are beyond the scope of this tutorial. There are
many GUI frameworks available. The one bundled with Python is Tkinter (based on Tk).

4.9 Debugging
Believe it or not, many Python programmers simply rely on using traceback information along with appro-
priately placed print statements. Nevertheless, Python has a debugger, which is in the pdb module. The
Python library documentation gives the full details on using the debugger. While the debugger does support
a number of powerful features, it is a command-line debugger, which means that it is clumsier to use than
a GUI-based one (GUI-based Python debuggers do exist; these are brie�y mentioned in the appendix on
editors and IDEs). This part will only highlight the most common commands. There are two common ways
of invoking the debugger. One can run the function from the debugger or one can start the debugger in
a 'post-mortem' mode after an uncaught exception has been raised. We'll illustrate both with a contrived
example. In a �le fact.py:

def factorial(n):
if n<1 or type(n) not in [type(1), type(1L)]:

print 'argument must be positive integer'
raise ValueError

if n == 1:
return 1

else: # intentional exception raised when n=5
if n == 5: 0/0
return n*factorial(n-1)
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Note that this is a recursive function, i.e., it calls itself. It has been written to intentionally raise a divide-
by-zero exception when the argument is 5 (given the way it is written, that will always happen for values
>= 5) . First we show it working:

> > > import fact
> > > fact.factorial(4)
24

Now let's try a case that fails, then invoke the postmortem feature:

> > > fact.factorial(7)
[...]
ZeroDivisionError: integer division or modulo by zero
> > > import pdb # the debugging module
> > > pdb.pm() # start postmortem debugging
> [...] /fact.py(8)factorial()
-> if n == 5: 0/0
(Pdb)

The debugger now is at the level that started the exception. While in that level you may inspect the contents
of all the variables, move to other levels of the stack, etc. While it is possible to single step and restart
execution, the exception cases generally make those options less useful. Post-mortem mode is mainly for
looking at the state that it failed in rather than executing. The following shows some examples.

(Pdb) p n # print the value of n
5
(Pdb) w # where in the call stack are we?

<stdin>(1)()
[...] /fact.py(9)factorial()

-> return n*factorial(n-1)
[...] /fact.py(9)factorial()

-> return n*factorial(n-1)
[...] /fact.py(8)factorial()

-> if n == 5: 0/0
(Pdb) u # move up one level in the stack
> [...] /fact.py(9)factorial()
-> return n*factorial(n-1)
(Pdb) p n # print the value of n
6

The prompt for the debugger is (Pdb). Many of the debugger commands show where it currently is in the
calling stack by printing the name of source �le that contains the code (the path is shown as [...] since that
will be dependent on the location of your code and the function or method that is being executed followed
by the source line. Many commands can be invoked with a one or two character abbreviation (the example
makes use of these abbreviations).

Since this is a recursive function, when it is called with the argument 7, it then calls it self with an
argument of 6, then again with 5 and stops there because an exception is raised. That's why you see the
repeated fact.py(x)factorial() references. Three di�erent levels are in the very same function. The top
two at line 9 and the last at line 8. As we would expect, printing out the value of n where the exception
occurs shows it to be 5. The up command (u) moves to the previous call level; the value of n at that level
is 6, as expected. Here are the commands most useful for postmortem examination (parentheses are used to
show the alternate forms of the command, e.g., h or help):

h(elp) [command] list commands, or given speci�c command, give details of that command

w(here) show stack trace and location of current location
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d(own) move down in the stack of calls

u(p) move up in the stack of calls

l(ist) [start[, end]] list code. Defaults to 11 lines centered at current location.

p expression print value of expression in the current context

pp expression pretty print value of expression

a(rg) print the current function's argument list

q(uit) quit the debugger mode

If you are using IPython, you can set it so that it automatically goes into post-mortem mode by starting
IPython with the -pdb option, or by typing pdb at the IPython prompt. When it is in this mode it is similar
to how IDL behaves when errors occur.

The simplest way of inserting e�ective breakpoints in the postmortem mode is to place 0/0 where you
wish it to stop in your code (presuming nothing will trap that error!).

The function can be run from the start with the debugger. In that mode it is possible to set breakpoints
(with options to ignore the breakpoint some speci�ed number of times�useful for stopping after so many
iterations), clear breakpoints, etc. One can also single step through the program, jump to other locations,
de�ne aliases, and a standard con�guration �le. See the Python documentation for a listing of the commands.
The following shows a brief example of stepping through the code.

> > > pdb.run('fact.factorial(7)')
> <string>(1)?()
(Pdb) s # start stepping
--Call--
> [...]/fact.py(1)factorial()
-> def factorial(n):
(Pdb) # typing <Return> (blank line) executes last command, i.e., s
> [...]/fact.py(2)factorial()
-> if n < 1 or type(n) not in [type(1), type(1L)]:
(Pdb) b factorial # set breakpoint to first statement in function
Breakpoint 1 at [...]/fact.py:2
(Pdb) c # continue execution until end or next breakpoint
> [...]/fact.py(2)factorial()
-> if n < 1 or type(n) not in [type(2), type(1L)]:
(Pdb) p n
6

4.10 PyRAF
[This section can be skipped by non-astronomers]

4.10.1 Basic features
PyRAF was written here at STScI to replace the IRAF CL, with the goal of allowing the running of IRAF
tasks and scripts from a Python environment. IRAF has an extremely rich set of tasks, but using the CL
isn't everyone's cup of tea. With PyRAF, it is possible to use Python syntax as well as CL syntax, and this
alone greatly enhances the power available to PyRAF users.

The PyRAF tutorial gives a good introduction to using PyRAF, highlighting some of its most important
features:

• Almost all of the CL functionality is available

• CL scripts will run under PyRAF

89



• Easier debugging of CL scripts

• Command-line recall!

• Tab-completion!

• GUI parameter editor

• Powerful graphics system

It is possible to write Python functions that will run under PyRAF using the same parameter passing
mechanism as IRAF and the same epar interface.

4.10.2 Using PyRAF
Using Python in PyRAF makes is relatively easy to do complex tasks. For example, MultiDrizzle is written
almost entirely in Python (there are some parts that were written in C to improve the execution speed). To
give a useful example, one of the most frustrating aspects of IRAF is that it is very di�cult to operate on a
set of FITS extensions. Doing

---> imstat *.fits[sci,*]

doesn't work, and nor does making a �le list using �les:

---> files *.fits[sci,*] > filelist

But it is relatively easy to make a simple function to do extension processing, returning a list of �les with
extensions that match a speci�cation. Here's the code

import pyfits
from pyraf import pyraf
def extensions(filespec, ext=None):

�'A module to return a list of files that meet the specification�'
filelist = iraf.files(filespec, Stdout=1)
outlist = []
for exposure in filelist:

thisfile = pyfits.open(exposure)
_nextensions = len(thisfile)
for i in range(_nextensions)[1:]
if(thisfile[i].header['extname'] == ext.upper():

extver = thisfile[i].header['extver']
outlist.append(exposure + '[' + ext + ',' + str(extver) + ']')

thisfile.close()
return outlist

Since the IRAF files task does wildcard �lename processing, it seems a waste not to use it. Note the syntax
of using Stdout=1; this puts the output from the files task into a list which the filelist variable is set
to. We use the extensions function by doing:

---> from extensions import *
---> extensions('j*flt.fits','SCI')
['j6me13q9q_flt.fits[SCI,1]', 'j6me13q9q_flt.fits[SCI,2]',
'j6me13qaq_flt.fits[SCI,1]', 'j6me13qaq_flt.fits[SCI,2]',
'j95t20hmq_flt.fits[SCI,1]', 'j95t20hmq_flt.fits[SCI,2]',
'j95t20hoq_flt.fits[SCI,1]', 'j95t20hoq_flt.fits[SCI,2]',
'j95t20hrq_flt.fits[SCI,1]', 'j95t20hrq_flt.fits[SCI,2]',
'j95t20huq_flt.fits[SCI,1]', 'j95t20huq_flt.fits[SCI,2]',
'j95t20hyq_flt.fits[SCI,1]', 'j95t20hyq_flt.fits[SCI,2]',
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'j95t20i1q_flt.fits[SCI,1]', 'j95t20i1q_flt.fits[SCI,2]',
'j95t20i4q_flt.fits[SCI,1]', 'j95t20i4q_flt.fits[SCI,2]',
'j95t20i7q_flt.fits[SCI,1]', 'j95t20i7q_flt.fits[SCI,2]']
---> for extension in extensions('j*','SCI'):
... iraf.imstat(extension)
[lots of imstat output]

4.10.3 Giving Python functions an IRAF personality
One of the powerful aspects of PyRAF is that it allows you to write Python functions and then wrap them in
such a way that they can be run as though they were IRAF tasks with the same CL syntax that IRAF tasks
can be invoked with. The following is an example that uses many of the capabilities that PyRAF provides.
In this case, write a short Python function to �nd the maximum value of an image or images in a �ts �le
after smoothing by a boxcar. It needs 3 arguments: the name of the input �le, the extension number, and
the size of the boxcar �lter.

In a �le smax.py:

from convolve import boxcar
import pyfits
def smax(input, next, bsize=5):

if next:
im = pyfits.getdata(input, next)

else:
im = pyfits.getdata(input)

return boxcar(im, (bsize,bsize)).max()

In a separate �le smax_iraf.py (though it isn't necessary; it's just to keep the IRAF aspects isolated from
the pure Python functionality.

from pyraf import iraf
import smax
def _smax(image, bsize, max, verbose):

�'Use Python function smax to determine maximum smoothed value�'
pos = image.find('[') # name contain extension spec?
if pos>0:

filename = image[:pos]
nextstr = image[pos+1:-1]
try: # integer ext or name?

next = int(nextstr)
except TypeError:

next = nextstr
else:

filename = image
next = None

max = smax.smax(filename, next, bsize)
if verbose:

print 'smoothed maximum =', max
iraf.smax.max = max

parfile = iraf.osfn('home$scripts/smax.par')
t = iraf.IrafTaskFactory(taskname='smax', value=parfile, function=_smax)

Finally, create a �le named smax.par (in home$scripts, though it can be anywhere you'd like so long as
the reference to that directory in smax_iraf.py is consistent) that contains:
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input,s,a,""�,"input file (including extension)"
bsize,i,a,5�,"size of boxcar to smooth with"
max,f,h,0.�,"maximum found"
verbose,b,h,yes�,"Print value?"
mode,s,h,"al"

Either in PyRAF at the command line or in a CL package script (see PyRAF Programmer's Guide for
details)

--> pyexecute('home$scripts/smax_iraf.py')

At this point is is possible to use the task like any other IRAF task. You can then:

--> epar smax
[...]
--> lpar smax

input = pix.fits input file (including extension)
bsize = 5 size of boxcar to smooth with
(max = 0.) maximum found

(verbose = yes) Print value?
(mode = al)

--> smax pix.fits[0] 11 verbose+

The wrapper function _smax is essentially taking the inputs from the IRAF interface and adapting them
to the Python function. It is separating the �lename into the two components (if there is an extension
speci�cation). The rest of the smax_iraf.py �le is creating an IRAF task object for PyRAF to use by
pointing to the parameter �le and giving the appropriate name for the task.

If you are particularly fond of working with CL command-style syntax, this a way of accessing Python
programs within that environment (or allowing colleagues to do so).

4.11 Final thoughts
We like Python because it's possible to be productive very quickly. You can write some ugly quick and
dirty code to get what you want done. And then you can throw that code away. If you need to write
production code, you can do that too; Python is very robust and full-featured, and chances are there's a
module somewhere that will help you out.

Exercises
1. Write a function to do a regular expression match on FITS header keywords and print all that match

given a �lename and regular expression string (see the re module documentation for usage).

2. Wrap the previous function as a PyRAF task.

92



5 What is this object-oriented stu� anyway?
The object-oriented features of Python provide capabilities that are hard to obtain by any other means.
This tutorial won't make you a wizard at object-oriented design, nor will it come close to even giving
you a solid grounding, but it will give you a �avor of the advantages that the object-oriented features of
Python provide. The focus will be much more pragmatic than you will normally �nd in introductions to
object-oriented programming.

5.1 Class basics
5.1.1 Class de�nitions
A class de�nes its attributes and methods as follows

class Clown:
�'Educational Class�' # docstring
def __init__(self, noise='Honk Honk'):

self.noise=noise
def makenoise(self):

print self.noise

This creates class called Clown that has one attribute (noise) and one method (makenoise). There are a
couple things about this class de�nition that are not what they seem. First of all, all methods assume that
the �rst parameter will be a reference to the object itself. By convention, virtually everyone uses the name
self for that parameter, though Python does not require you to use that name. If you know what's good for
you, you'll also use that convention.

So, fair enough, the �rst argument is a reference to the object. But note that the �rst argument is not
used when calling the method for a given object, Python puts it in for you. This aspect is bound to confuse
you at least a couple times. The example of usage later will illustrate this point.

The second aspect of this class de�nition that isn't obvious is the __init__ method. As previously
mentioned, methods with names of the form __zzz__ indicate some sort of indirect e�ect. The __init__
methods is the initialization method. It is what is called when you create an instance of the class. But
normally you don't call it directly. For example (in a �le clown.py)

> > > import clown
> > > bozo = clown.Clown() # create first clown object
> > > weepy = clown.Clown('Boo Hoo') # create second clown object
> > > bozo.makenoise()
Honk Honk
> > > weepy.makenoise()
Boo Hoo

Calling the class as a function in e�ect calls the __init__ method on a new instance of that class. It is the
__init__ method that typically sets up the attributes of the object. Generally the values of the attributes
are passed as parameters (but can also be set indirectly or from the general environment; e.g., the current
time). Since the noise defaulted to 'Honk Honk', not supplying an argument resulted in the noise attribute
set to that value. Also note that Python takes the method call and e�ectively transforms it into the form of
the last line of the example; that's where the value of self gets set. You have to get used to the idea that
the de�nition of the method has an extra parameter than the way it will be used.

One point about OO terminology needs to be hammered home. Classes and objects are not the same
thing. A class de�nes things about the object, but it should not be confused with those objects. In the
previous example, Clown is the class. The variables bozo and weepy refer to objects created from that class.
There is only one class, but many potential objects that can be created from it. The relationship is similar to
that between types of variables and speci�c variables. In fact, you can think of classes as user-de�ned types
that have associated programs (methods) that come along with those types. A common beginner mistake is
to be sloppy about the distinction between the two concepts.

93



Frequently objects are referred to as 'instances of' of classes, or objects being 'instantiated' from a class,
or the act of creating a class instance as 'instanciation'.

5.1.2 Python isn't like other object oriented languages
Python allows some things that most other object oriented languages don't permit. That it does �lls some
purists with shock and horror. Like freedom in general it can be abused, but generally it is not a problem
and sometimes a very useful capability.

Python permits new attributes to be added to classes after their creation. And methods. You can add
whatever attributes or methods you desire at any time you want. Continuing the previous example:

> > > bozo.realname = 'Clark Kent'
> > > def yell(cstr=�): print cstr.upper()
> > > bozo.yell = yell # adding a new method just for this object
> > > print bozo.realname
Clark Kent
> > > bozo.yell('hey you')
HEY YOU

The case of adding a method is a bit of a cheat in that you may notice that the function has no reference to
self and methods added that way can't get at the attributes or methods of that instance. To do that requires
a little more trickery:

> > > def yellname(self): print self.realname.upper()
> > > bozo.__class__.yellname = yellname
> > > bozo.yellname()
CLARK KENT

In e�ect we have dynamically added a method to the class rather than the instance which does allow it to
reference self.

As far as unrestricted freedom to add to objects, this isn't entirely true. Python does provide mechanisms
to prevent arbitrary additions of attributes and methods. But it is true that by default nothing keeps one
from doing so.

Another thing that Python does di�erently is that it doesn't provide an means of protecting or hiding
methods and attributes from external clients of the objects as is common with most OO languages. Python
takes a decidedly di�erent philosophy on this issue. Rather than devising mechanisms to prevent program-
mers and users from getting at internals, it expect them to use conventions indicating that some items
are private and shouldn't normally be messed with (e.g., any attribute or method name that begins with
an underscore). It expects you to be sensible, but won't prevent you from violating the convention (and
wouldn't you know it, sometimes it's necessary to violate the convention if there is no other way of getting
the job done). If you do so and su�er as a result, it's your fault, not the language's. Python's point of view
regarding this is �We are all adults here�.

5.1.3 Classes as a generalized data structure
This leads us to our �rst (if somewhat trivial) practical use of classes. Some may have noticed that Python
has no structure mechanism similar to that available in C or Java. Often, it's possible to just use lists, tuples
or dictionaries (particularly the latter if it is important to refer to the structure member by name) instead.
But there are times where it's just nice to be able to use the var.member syntax that structure provide.
Classes allow that. One can de�ne special purpose classes as structures, where there are no methods (aside
from the __init__ method, and if one intends to add the attributes after the structure creation, even that
isn't needed). One can either de�ne an __init__ that expects all the structure elements, or create a very
bare class from which one will add attributes later. For example:

class Point:
�'structure to hold coordinates of a point�'
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def __init__(self, x, y):
self.x = x
self.y = y

> > > import point
> > > p1 = point.Point(0.,0.)
> > > p2 = point.Point(10.3, -22)
> > > p2.x
10.3
> > > p1.y = 100

5.1.4 Those 'magic' methods
So far we've ignored all those strange methods that are of the form __zzz__. What the heck are they for?
They are all generally hooks that allow your classes to take advantage of special Python syntax or behaviors.
If you'd like to write a class whose objects can be indexed like lists, tuples or dictionaries you can do that
by de�ning the __getitem__ method for your class. If you de�ne that method suitably, then you take full
advantage of indexing syntax. The following example will illustrate by de�ning a class that can collect items
in a list, but e�ectively keep them sorted when retrieved by index. It's not very useful, but it shows how it
works. In �le sortedlist.py

class SortedList:
def __init__(self):

self.values = []
def append(self, value):

self.values.append(value)

def __getitem__(self, index):
self.values.sort()
return values[index]

def __len__(self):
return len(self.values)

> > > import sortedlist as sl
> > > x = sl.SortedList()
> > > x.append("apple")
> > > x.append(3)
> > > x.append("pear")
> > > x.append(7)
> > > x.append("mango")
> > > x.append(11)
> > > x.append("orange")
> > > for v in x: print v
3
7
11
apple
mango
orange
pear

Nothing requires a class that uses __getitem__ to be �nite in the keys that are possible.
The magic methods allow one to take advantage of many of Python's conveniences. The following lists

all the magic methods and the behavior they a�ect. Note that a number are associated with built-in Python
functions. The �rst shown (__len__) means that if you de�ne it for your class, than an instance of that
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class will work with len() (even though the built-in function has no idea of what your class is). These are
hooks to allow your class to give the necessary information to many of the standard built-in functions.

Container methods:

__len__(self): What the built-in function len() uses to determine how many elements a class contains.
If it isn't present, len() doesn't work for that class

__getitem__(self, key): Used when an object is indexed with key (returns self[key]).

__setitem__(self, key, value): Used for assigning to indexed objects (self[key]=value)

__delitem__(self, key): Used to delete self[key].

__iter__(self): Used when next element of an iterator is asked for.

__contains__(self, item): Used for the expression item in self.

Sequence methods:

__getslice__(self, i, j): Returns self[i:j]. In many respects, this method is no longer needed since
__getitem__ can handle all slicing (and is necessary if strides are used).

__setslice__(self i, j, sequence): Used for self[i:j]=sequence. Like __getslice__, this method
isn't really necessary since __setitem__ can handle all slicing cases (including strides).

__delslice__(self, i, j): Used to delete slices.

General methods

__new__(cls...), __metaclass__: for experts only.

__init__(self, ...): You've met this one already

__del__(self): called when reference count goes to 0. Usually used when some sort of cleanup is needed
that can't be expected to be handled by simply deleting all references within the object. Some subtleties
in when this is guaranteed to be called. See documentation.

__repr__(self): called by the built in repr() (also used at interactive prompt) to print info about object

__str__(self): called by the built-in str() to print string representation for object (e.g., print obj)

__lt__,__le__,__eq__,__ne__,__gt__,__ge__: called for <, <=, ==, !=, >, >= operators respectively
with (self, other) as arguments.

__cmp__(self, other): called by comparison operators if appropriate speci�c operator magic method
not de�ned. Should return negative integer if self<other, 0 if self==other, positive integer if
self>other.

__hash__(self): Used to convert key for dictionary into 32-bit integer. If you don't know what this means,
ignore it for now.

__nonzero__(self): Called when object is used as a truth value. Normally returns False or True.

__unicode__(self): used by built-in unicode()

__call__(self, args...): Called when object is �called� as though it were a function (e.g., IRAF tasks
objects use this trick)

Attribute methods:

__getattr__(self, name): Called when an attribute of the speci�ed name is not found
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__setattr__(self, name, value): Called when trying to set the value of an attribute. Always called
regardless of whether such an attribute exists (thus a bit tricky to use; see documentation for examples)

__delattr__(self, name): Called when attribute is deleted (e.g., del self.name)
__getattribute__, __get__, __set__, __delete__, __slots__: are powerful and very useful, but are

beyond the scope of this introduction. In particular these allow one to restrict what attributes are
allowed for an object, as well as associate functions to be called when getting or setting the value of
the given attributes. See the documentation for details.

Numeric methods (used to overload numeric operations). The following table shows the magic methods
that are called when numeric operators or standard functions are called. They all have the same
function arguments: (self, other). There are three di�erent magic methods for each operator. To
illustrate we'll use the addition operator as an example. Given your object obj, when Python encounters
the expression obj+3 it sees if you have de�ned __add__, if so it will call obj.__add__(3). You use
that method to de�ne what should happen when you try to add something to it. You may only accept
numbers as the �other� argument. Or you may only accept other instances of the same class. It's up to
you. When Python encounters 3+obj, it will �nd that '3' doesn't know what to do with obj, it then
sees if obj knows what to do, then it calls obj.__radd__(3). The second column refers to when the
object is the rightmost part of a binary operator. The last is when you �nd �augmented� assignment
statements. For example: obj += 3 will result in obj.__iadd__(3) being called.

self op. other other op. self self op= other Operator
__add__ __radd__ __iadd__ +
__sub__ __rsub__ __isub__ -
__mul__ __rmul__ __imul__ *
__floordiv__ __rfloordiv__ __ifloordiv__ / or //
__mod__ __rmod__ __imod__ %
__divmod__ __rdivmod__ __idivmod__ divmod()
__pow__ __rpow__ __ipow__ **
__lshift__ __rlshift__ __ilshift__ < <
__rshift__ __rrshift__ __irshift__ > >
__and__ __rand__ __iand__ &
__xor__ __rxor__ __ixor__ ^
__or__ __ror__ __ior__ |
__truediv__ __rtruediv__ __itruediv__ /

__coerce__(self, other): Called by numeric operations. Should return a tuple of (self, other) where one
or both have been converted to a common numeric type (see below).

Unary operators:
__neg__(self): -self

__pos__(self): +self

__abs__(self): abs(self) [built-in abs()]
__invert__(self): ~self (bit inversion)
__complex__(self): complex(self) [should return complex value]
__int__(self): int(self) [should return integer value]
__long__(self): long(self) [should return long integer value]
__float__(self): float(self) [should return �oat]
__oct__(self): oct(self) [should return string]
__hex__(self): hex(self) [should return string]
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5.1.5 How classes get rich
They inherit, that's how. Before discussing what they inherit we'll note that usually by now there is some
explanation of why classes are so wonderful with regard to the theory of object oriented programming. You'd
see terms like abstraction, encapsulation, and polymorphism. These are very nice terms, but we are going
to avoid them for a while. Instead we will take a di�erent track in demonstrating why classes can be useful.
One of the other common OO terms is inheritance. What it essentially means is that classes can steal work
that has been done for other classes, particularly if that other class already does an awful lot of what you
need to do, but not exactly. Generally speaking, when you inherit from another class, it is expected that
you will be able to do all that class can do, and perhaps more. You may not do it the same way, but you
will have all the same public methods and attributes (those that convention has not indicated are to be kept
private; see 4.7.6). Nothing enforces this though. If you want to be antisocial, you are free to be antisocial.

As usual, examples are the best way of showing what this is all about. Suppose you love dictionaries
and want to use them in your program. But for some reason, you only will accept strings as keys, and want
keys to be case-insensitive. Does this mean you have to rewrite all the machinery for dictionaries? Hardly.
Here's how it can be done with very little code

class SDict(dict):
�'Dictionary that only accepts case-insensitive string keys�'
def __init__(self, idict = {}):

�'If intializing dict is non-null, examine keys�'
keys = idict.keys()
values = idict.values()
for i in range(len(keys)):

if type(keys[i]) != type(�):
raise TypeError

keys[i] = keys[i].lower()
dict.__init__(self)
for key, value in zip(keys, values):

self[key] = value
def __getitem__(self, key):

if type(key) != type(�):
raise TypeError

return dict.__getitem__(self, key.lower())
def __setitem__(self, key, value):

if type(key) != type(�):
raise TypeError

dict.__setitem__(self, key.lower(), value)
> > > import sdict
> > > sd = sdict.SDict({'Bob':'555-1234','Hubble':'338-4700'})
> > > sd
{'bob': '555-1234', 'hubble': '338-4700'}
> > > sd[3]=4
[...]
TypeError:
> > > sd['BOB']
'555-1234'

Note now that the class name has an argument dict. This is the mechanism to indicate that this class is
inheriting from dict, which happens to be the class name associated with standard Python dictionaries.

To really do this right, a few other dict methods should be overridden to handle keys properly. These
include has_key(), update(), get(), and setdefault(). So with about a page of code, you have completely
customized a powerful data structure for a more specialized use.

One �nal remark about inheritance. The built-in function isinstance() will return True if the class the
object is being compared to is anywhere in its inheritance hierarchy. For example:
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> > > isinstance(sd, dict)
True

So even though sd is an instance of SDict, it is also considered an instance of every class it inherits from
(dict here). This can be used to ensure that any object inherits from a given class (but see the discussion
about duck typing [yes, that's duck] later, before using this too heavily)

5.2 A more complex example: Representing Source Spectra
5.2.1 Goals
This section explores a more realistic problem in more depth. We'll start with a simpler version of the general
problem, and do a comparatively simple implementation. Then we'll discuss how new features can be added,
without necessarily doing all the actual work, to illustrate the advantages of the object-oriented approach
over a more traditional procedural approach. The example chosen is far from an academic exercise.

The problem to solve is modeling source spectra. Ultimately, we'd like a very general approach that
provides many features; but we'll start with more modest goals: we want to be able to build up a source
spectrum from an unlimited number of analytic source components and be able to sample the net spectrum
at whatever wavelengths we choose without using resampling. We'll address �ux integration and tabulated
source models later. To keep the example short, we'll only implement two analytic models: Gaussian lines
and black bodies (adding others is straightforward). We'll also assume that wavelengths are always in
angstroms and the source spectra are in units of Fλ.

5.2.2 Initial Implementation
The approach taken for the models may strike many as unusual, but it allows great �exibility. We'll show the
source code for the basic implementation, and then go into a lot of detail explaining how it works. It probably
will appear unintelligible at �rst glance even though it is relatively short. Have patience. This example makes
use of inheritance and abstract classes. The latter is an important and often used technique. Abstract classes
are generally incomplete implementations that are never expected to have an instance created of it directly.
They are intended to be inherited by other classes that will �ll out the functionality. Classes that will have
instances created are sometimes called concrete classes in contrast to abstract.

import numpy as n

class SourceFunction:
�'Abstract Class representing a source as a function of wavelength

Units are assumed to be Flambda
�'

def __add__(self, other):
return CompositeSourceFunction(self, other, 'add')
# __radd__ not needed

class CompositeSourceFunction(SourceFunction):
�'Source function that is a binary composition of two other functions

�'
def __init__(self, source1, source2, operation):

self.comp1 = source1
self.comp2 = source2
self.operation = operation

def __call__(self, wave):
if self.operation == 'add':

return self.comp1(wave) + self.comp2(wave)
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class BlackBody(SourceFunction):
def __init__(self, temperature):

self.temperature=temperature
def __call__(self, wave):

BBCONST =6.625e-34 * 3e8/(1.38e-23 * 1.e-10)
exparg = BBCONST/(n.array(wave)*self.temperature)
exparg[exparg>600] = 600. # to prevent overflows
return 1.e21/(wave**5 * (n.exp(exparg)-1.))

class Gaussian(SourceFunction):
def __init__(self, center, width):

self.width=width
self.center=center

def __call__(self, wave):
return n.exp(-(wave-self.center)**2/(2*self.width**2))

Before explaining how it works, we'll give some context by showing how it is used.
> > > import spec as s
> > > from pylab import *
> > > spectrum = s.BlackBody(6000) + s.Gaussian(3000, 50)
> > > wavelengths = arange(7000) + 1.
> > > plot(spectrum(wavelengths))

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

� � �

�

� � �

�

� � �

�

A composite spectrum is built simply by adding basic elements together as an expression (one could add
more Gaussian components at di�erent wavelengths and widths just by adding more terms in the expression).
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Although spectrum is an object, it can be called as though it were a function. When called with an array of
wavelengths, it returns an array of �uxes that is then plotted.

While the use is deceptively simple, and the code is relatively short, more is happening than immediately
meets the eye. This example uses a number of Python's object-oriented capabilities. We will introduce these
not in the order that they appear in the source �le, but in the order they are used in the example.

5.2.3 Basic object creation
The �rst things that happen are two basic spectrum objects are created. One is a an instance of a
BlackBody class. Looking at the source code, notice that the __init__ method (what gets called as
s.BlackBody.__init__(self, 6000) when s.BlackBody(6000) is executed) is very simple. All it does
is save the temperature as an attribute. Nothing else at all is done. Likewise, when s.Gaussian(3000,50)
is executed, its __init__ method simply saves the parameters of the speci�ed Gaussian. So far, not a whole
lot has happened. Two new objects exist, but they haven't really done anything.

5.2.4 Spectrum addition
When these two objects are added is when things get interesting. As we mentioned in an earlier section,
Python lets you de�ne what should happen when various operators are encountered. We didn't give much
detail about how that happened. When Python �nds two objects combined with one of its standard operators
(addition in this case) it looks at the �rst object and sees if it has a __add__ method de�ned. If it does, it
calls it, giving it the other object as an argument. Fine you say, but what about the case when this method
isn't present, which at �rst glance, it doesn't appear to be for either of these classes. But there is. Notice
that both of these classes inherit from SourceFunction. And in particular they inherit its methods. There
is only one method de�ned for SourceFunction, and wouldn't you know it, it's __add__. Any class that
inherits SourceFunction automatically gets the __add__ method for free. It is written in such a way that
it has no dependence on the details of the class that inherits it.

So s.SourceFunction.__add__ will be called with the BlackBody object as self, and the Gaussian as
other. This method is quite simple, but you will quickly notice that it returns an instance of a 3rd class:
CompositeSourceFunction. This 3rd class also inherits from SourceFunction, and like BlackBody and
Gaussian, it also de�nes an __init__ and __call__ method. Instead of saving the attributes of a speci�c
spectrum model (like temperature or central wavelength), it saves references to the two objects that are
supposed to be added. And that's all! Nothing seems to really be added. At this point it is easy to think
that this object stu� is all smoke and mirrors. Where's the real action?

That comes later. To brie�y review what has happened in the creation of spectrum, Two basic source
function objects are created, and when added together, generate a CompositeSourceFunction object that
contains a reference to each of the two basic objects, but otherwise hasn't really done any real computation.

5.2.5 Evaluation of the spectrum at given wavelengths
Now we encounter spectrum(wavelengths). As previously mentioned, when an object is called as a function,
Python sees if the object has de�ned a __call__ method. If it has, it is called with the arguments given (and
if not, an exception is raised). As you can see from the source, all the concrete (i.e., non-abstract) classes
have de�ned __call__. For the case of the CompositeSourceFunction, its __call__ method is called with
wavelength as the argument. What it does is call each of the two source function objects it refers to with
the same wavelength argument. So the respective __call__ methods of the BlackBody and Gaussian are,
in turn, called with the same wavelength array. You will see that the __call__ methods are where the real
action takes place. This is where the spectrum model computation resides. As a result, each call results
in an array of �uxes that is returned to the CompositeSourceSpectrum object __call__ method, and then
these are added, and the resulting array is returned.

5.2.6 Why this is better than the traditional approach
Answering this �rst requires understanding what the traditional approach would be. And that's not so
obvious. How would you do it? There are two variants of 'traditional' that can be considered: writing this in
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a language like C or Fortran, or writing it in IDL using arrays. Let's take these in turn. With the example
above, we can construct a composite spectrum from any number of basic elements by adding them together.
So the traditional C/Fortran approach must be able to deal with an unlimited number of components of
many types. That may not seem so hard, just provide a list somehow. Yes, that works for this basic
version. But the example above hasn't yet addressed multiplicative factors, which are easy to address in this
framework (and a later version will show that). Thus the software will have to deal with arbitrarily complex
expressions of spectral components. It is hard to escape the fact that one needs to write an expression parser
(as synphot does). That is no simple matter at all. For the Python object-oriented approach, it is completely
unnecessary since Python is doing the parsing for you. This alone is a huge advantage.

Is this an advantage over IDL as well? That depends on how you approach the problem. If the approach
is to take advantage of the array capabilities, one might consider generating an array for each component
at a speci�ed set of wavelengths. If one can do this for all components using the same set of wavelengths,
then IDL can handle combinations of spectra using its array expression facilities. Parsing expressions would
not be necessary. But this approach is fraught with di�culties. What wavelengths to choose? If you don't
choose a set that is �ne enough, you risk missing important features in the components. What if someone
chooses a Gaussian line width of 0.01 angstroms and you only sample every angstrom? No matter what your
default choice, eventually someone will �nd it a problem. What range of wavelengths should you cover? That
involves choices as well. Arbitrary restrictions will come back to bite you eventually. When someone asks
for �uxes for a speci�c wavelength set, how do you get these from the sampled wavelengths? Interpolation?
What kind of interpolation? Choices there can often back�re (suppose it generates negative values when
the spectrum component model was always positive). When the spectrum model can use tabular spectra
in addition to analytic spectra, will the resampling of the tabular spectra onto a standard wavelength set
introduce unacceptable errors, particularly in view of the fact that there may be subsequent resamplings?

In fact, the use of arrays to represent all components is a possible choice for C or Fortran implementations
as well, and the same issues arise there also. Indeed, that's how synphot was implemented. And every one
of the concerns listed have been manifested as actual problems in practical usage of synphot at one time or
another. There has never been a truly satisfactory solution to them using standard wavelength sets.

We'll detail other advantages of object-oriented approach after adding some more features and capabilities.

5.2.7 Take 2: handling multiplicative e�ects
Simply adding �xed components together isn't very useful. There must be a way of handling scaling each
component as well as handing e�ects that are multiplicative such as absorption lines or reddening. This next
version adds these capabilities (new or modi�ed code is shown prefaced with |).

import numpy as n

| class TransmissionFunction:
| �'Abstract Class representing a transmission function of wavelength
|
| Unitless�'
| def __mul__(self, other):
| if isinstance(other, TransmissionFunction):
| return CompositeTransmissionFunction(self, other)
| if isinstance(other, SourceFunction):
| return CompositeSourceFunction(self, other, 'multiply')
| if type(other) in [type(1), type(1.)]:
| return CompositeTransmissionFunction(
| self, ConstTransmission(other))
| else:
| print "must be product of TransmissionFunction, SourceFunction or constant"
| def __rmul__(self, other):
| return self.__mul__(other)
|
| class CompositeTransmissionFunction(TransmissionFunction):
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| �'Transmission function that is a product of two other transmission functions�'
| def __init__(self, tran1, tran2):
| if (not isinstance(tran1, TransmissionFunction) or
| not isinstance(tran2, TransmissionFunction)):
| print "Arguments must be TransmissionFunctions"
| raise TypeError
| self.tran1 = tran1
| self.tran2 = tran2
| def __call__(self, wave):
| return self.tran1(wave) * self.tran2(wave)
|
| class ConstTransmission(TransmissionFunction):
| def __init__(self, value):
| self.value = value
| def __call__(self, wave):
| return 0.*wave + self.value
|
| class GaussianAbsorption(TransmissionFunction):
| def __init__(self, center, width, depth):
| self.center = center
| self.width = width
| self.depth = depth
| def __call__(self, wave):
| return 1. - self.depth*n.exp(-(wave-self.center)**2/(2*self.width**2))

class SourceFunction:
�'Abstract Class representing a source as a function of wavelength

Units are assumed to be Flambda
�'

def __add__(self, other):
| if not isinstance(other, SourceFunction):
| print "Can only add SourceFunctions"
| raise TypeError

return CompositeSourceFunction(self, other, 'add')
# __radd__ not needed

| def __mul__(self, other):
| if type(other) in [type(1), type(1.)]:
| other = ConstTransmission(other)
| if not isinstance(other, TransmissionFunction):
| print 'Source functions can only be '+ \
| 'multiplied by Transmission Functions or constants'
| raise TypeError
| return CompositeSourceFunction(self, other, 'multiply')
| def __rmul__(self, other):
| return self.__mul__(other)

class CompositeSourceFunction(SourceFunction):
�'Source function that is a binary composition of two other functions

�'
def __init__(self, source1, source2, operation):

self.comp1 = source1
self.comp2 = source2
self.operation = operation

def __call__(self, wave):
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if self.operation == 'add':
return self.comp1(wave) + self.comp2(wave)

if self.operation == 'multiply':
return self.comp1(wave) * self.comp2(wave)

class BlackBody(SourceFunction):
def __init__(self, temperature):

�'Temperature in degrees Kelvin�'
self.temperature=temperature

def __call__(self, wave):
BBCONST =6.625e-34 * 3e8/(1.38e-23 * 1.e-10)
exparg = BBCONST/(n.array(wave)*self.temperature)
exparg[exparg>600] = 600. # to prevent overflows
return 1.e21/(wave**5 * (n.exp(exparg)-1.))

class Gaussian(SourceFunction):
def __init__(self, center, width):

self.width=width
self.center=center

def __call__(self, wave):
return n.exp(-(wave-self.center)**2/(2*self.width**2))

Again, we will start with an example of usage:

> > > spectrum = s.GaussianAbsorption(4000,20,0.8) * \
... (s.Gaussian(3000,100)+2.*s.BlackBody(6000))
> > > plot(spectrum(wavelengths))
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No really new object-oriented concepts are introduced in this example except perhaps the checking of
object types. This is primarily an extension of the previous concepts to new operations and classes. Again
it is useful to trace what happens for the usage example.

Three objects are initially created, two of them essentially identical to the previous example (though
they have richer operator behavior now). The third is an instance of a new kind of wavelength function:
GaussianAbsorption which is a concrete case of a general TransmissionFunction. The key thing to note
is that these two kinds of functions have somewhat di�erent rules about what can be done with them.
Transmission functions are unitless. They can be multiplied with either transmission or source functions.
But they cannot be added with each other (or anything else for that matter). Source functions have speci�c
units. Thus they can be added with other source functions or multiplied by unitless functions, producing
a new source function in the process. These rules are embodied in the de�nitions (or lack of them) for the
operator methods for these classes. We'll get back to the details of these after following the example through
to the end.

The �rst di�erence that shows up is when the BlackBody object is multiplied by a �oating point constant.
Since �oating point constants don't know what to do with SourceFunction objects, it tells Python it can't
deal with it which causes Python to then look to see if the SourceFunction object has a __rmul__ method.
It does, so it is called with the �oating point value as its argument. Since multiplication is symmetric for
this case, all that method does is call the __mul__ method (don't duplicate code if you don't need to!). That
method checks to see if the type of the other object is either a TransmissionFunction instance, an integer
or �oat value (if none of these, it gives up). If it is a numeric constant, it turns it into a ConstTransmission
object and then proceeds to create a composite source function (which now has been modi�ed to accept
both kinds of objects and to support addition and multiplication by saving the operation type as one of the
object's attributes).
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The resulting composite source function is added to the GaussianSource object the way it was before
(but now it is necessary to indicate addition in the new composite source object (which has as one of
it elements another composite source object). Finally this is multiplied by a Gaussian line absorption
transmission function creating a third composite source object. In this case it is the GaussianAbsorption
object's __mul__ method that is called �rst. That returns the �nal composite source function object.

As in the previous case, calling the �nal object with a wavelength array is what evaluates the model by
evaluating the components of each composite object in turn and then adding or multiplying the results as
appropriate and returning those back in turn (notice that the __call__ method for the composite source
object checks to see which operation to perform).

5.3 Further enhancements to the spectrum model
At this point we'll stop presenting full implementations and instead discuss how one might go about enhancing
the capabilities of code (we have only so much space and you have only so much patience). Each issue will
show one or more examples of usage for the proposed mechanism.

5.3.1 Determining total �ux
Very often the point of making such spectral source models is being able to determine the total �ux expected.
After all, imaging observations e�ectively integrate �ux density over wavelengths, and one often wants to
compare the observations with a model. Integrating the �ux density of a model spectrum is an essential
capability.

Fortunately, numerical integration is a well-studied subject. Unfortunately, no general algorithm is
foolproof for all functions that must be integrated. The advantage of the approach chosen for modeling
spectra is that it provides a means for avoiding these problems. Generally speaking, the problem with
numerical integration is knowing where the function is changing rapidly. Since each source and transmission
function is specially constructed, we can include as part of their behaviors (i.e., methods) a means of them
telling us where we should sample the function for integration purposes. In other words we could de�ne a
method (with a speci�c implementation for each kind of function) called waveset() that returns an array
of wavelengths that properly sample the structure of the function. For example, for the GaussianSource or
GaussianAbsorption objects, it would ensure that it returned enough points within the main part of the
Gaussian pro�le. It possibly could take an optional parameter that indicated sampling frequency or what
amount of percent change was permitted in the function between samples. The integration routine would
use these wavelengths to evaluate the function for integration purposes.

But what about composite objects? What are their wavelength sets? Simple, when one calls .waveset()
for a composite object, it calls .waveset() on the two components and joins them (i.e., the union of the
returned wavelengths. If either of those objects are composite, the same process is repeated until it hits
endpoint spectrum objects (just like addition).

The integration routine would be de�ned in the abstract class (it should have no dependencies on the
speci�c functions) and would �rst call the .waveset() method to get the wavelengths it will use for doing
the numerical integration. Possibly several integration methods could be used, either as options to the main
method or as di�erent methods. In this way, it should be possible to make the integration relatively robust
against a wide variety of model parameters.

An example of use:

> > > source = GaussianAbsorption(4000,20,0.8) * \
... (Gaussian(3000,100) + 1.e10*BlackBody(6000))
> > > source.integrate() # returns integrated flux

5.3.2 Handling empirical spectra
A means of modeling spectra that could not accept empirical spectra would be very limited. The example
given only addressed analytical models. How could one combine the two approaches? If one grants that it will
be necessary to resample the empirical spectra (and it is�e.g., combining it with a very narrow line analytical
feature that is smaller than the spacing in the empirical model), then one may treat the empirical spectra
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as an extreme form of analytical spectra. The interpolation behavior is then embodied in the evaluation
behavior (i.e., the __call__ method). The initialization of the SourceFunction object saves the arrays that
de�ne the wavelengths for the �uxes and the �uxes themselves. Likewise, the .waveset() method returns
the speci�c wavelengths for the �uxes used. Constructed that way, empirical spectra �t very well within this
object framework. Likewise, empirical transmission functions can be handled the same way.

An example:

> > > data = pyfits.getdata('fuse.fits')
> > > source = TableSource(flux=data.field('flux'),
... wavelength=data.field('wave'))

5.3.3 Valid wavelength ranges
In many instances, particularly with empirical data, it may be necessary to indicate what the valid wavelength
range of the component and the net spectrum model is. This is fairly easy to add. Each component may
add as part of its initialization what the valid range is for that component (even for analytical models) as
an optional parameter. Empirical components would, by default, take their valid range from the range of
wavelengths for the �ux values. The net valid range would be obtained from a method called waverange(),
de�ned for the base class to use the values saved for basic components, and it would be overridden for
composite objects to call waverange() for each of its components and take the intersection of those ranges
to obtain the net range for that composite. A value of None at either end would mean no limit. For example,
using the previous table data and a black body:

> > > source.waverange()
[985., 1085.]
> > > BlackBody(6000).waverange()
[None, None]

It may also make sense to provide a method to greatest extents of ranges present (the union of all ranges).
A secondary use of wavelength ranges is to bound integration of analytic components that no intrinsic

limits to their range. For example, if the net range of a given model is unbounded, then a default range may
be used or an exception may be generated.

5.3.4 Component normalization
Frequently it is necessary to de�ne the scaling factor for a given component based on the integrated �ux of
that component, often through a di�erent transmission function than being used in the given model (say
a V �lter). One way to incorporate this capability into the proposed scheme is to add a scale factor to all
function objects (including composite objects) that defaults to 1.0. Then a .normalize() method would
be added to the base class which takes one mandatory argument (the integrated �ux expected) and an
optional transmission function (.e.g., a �lter transmission curve) to be applied to the source function before
integration. Since this is generic to all source functions there need be only one version de�ned for the base
class. This method then does the integration on the net source function, and takes the ratio of the integration
result with the desired value to set the scale factor. The scale factor must of course be used by the __call__
method to apply it to the computed �uxes. Some examples (units are addressed later):

> > > source = BlackBody(6000).normalize(VMag(23.3))
> > > source = (Gaussian(3000,50) +
... 1.e10*BlackBody(6000)).normalize(Jy(3.1),
... trans=JohnsonV)

5.3.5 Redshifts
Handling redshifts is straightforward as well. Any function component (source or transmission) can take an
optional z parameter at initialization and save it as an attribute. This works for concrete components but
not so conveniently for composite ones. These can be handled either by de�ning a method to set the z for
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the composite object, or a function that does the equivalent. The e�ect of a nonzero z is to transform the
intrinsic wavelengths being used and divide Fλ by (1+z ). The �ux is computed at the 'rest' wavelength for the
model. Thus all methods that deal with wavelengths (__call__, waverange, waveset, etc.) need to apply
the appropriate transformation to the wavelengths. For example, in the __call__ method, the wavelengths
given as an argument would be redshifted to the source's rest frame, and then the model applied to that
set of wavelengths and the resulting �uxes returned. For things that return wavelengths apply the inverse
transformation. Both these transformations can be handled as standard functions used by all the relevant
routines. In fact, it is likely that a common interface routine for all these methods can be de�ned for the
base classes that then call the component-speci�c version that doesn't worry about z at all. This isolates
the redshift handling code to a small number of locations. The following snippets of code illustrate how this
would be accomplished.

class SourceFunction:
[...]

def __call__(self, wavelengths):
return self.resteval(invZ(wavelengths, self.z))/(1.+self.z)

def waveset(self):
return Z(self.restwaveset(), self.z)

What had previously been de�ned as __call__ and waveset in the concrete function classes now are renamed
resteval and restwaveset respectively. Since validrange is only de�ned for the base class, there is little
reason to depend on such indirection.

The following shows how redshift would be used.

> > > source = BlackBody(6000,z=1.3) # or
> > > source = BlackBody(6000).z(1.3)
> > > source = (Gaussian(3000,20)+Blackbody(6000)).z(1.3) # or
> > > source = Z(Gaussian(3000,20)+Blackbody(6000), 1.3)
> > > source = (GaussianAbsorption(3000,20,0.8,z=.3)* \

BlackBody(6000,.5)).z(.8)

The last case shows two components with individual redshifts and then with a subsequent redshift applied
to the combination (cumulatively). Note that it is possible to de�ne a function Z that actually performs
a transformation of wavelengths when given a scalar or array, and sets the z attribute of source functions
when those appear as arguments. Not everyone may think that it would be good to share the same function
for both uses.

5.3.6 Di�erent unit systems
Any practical modeling system would have to handle many di�erent units, both for the wavelengths, and
the �uxes. The approach taken here is to use only one for internal representation (a common approach)
and deal with other units only for conversion to and from other representations. At �rst glance units
appear deceptively simple, but unfortunately, they are anything but. This is partly because there is context
involved (e.g., electron volts can be interpreted as wavelengths or energies), and because there may be
dependencies on other values such as exists betweenFλ and Fν (depends on the wavelengths or frequencies
used). The �rst problem can be solved by con�ning our context to spectra (electron volts is presumed to
be a wavelength). The second is trickier since it needs more than the �ux to transform. It would be nice
to have transformation functions that only took scalar or arrays as arguments and applied the appropriate
scaling factor to generate the values in the appropriate units. It usually is important to have things like
unit transformations have a consistent interface so that one does not need a lot of code checking whether
the conversion function is this type or that before applying it. So a pragmatic solution is to just allow for an
optional wavelength argument to the unit conversion functions that is mandatory for conversions between
frequency and wavelength representations. Allowing the speci�cation of the units for the __call__ method
avoids having to again specify the wavelength in the unit conversion function since the wavelength is already
present as a argument. Dealing with this problem is not necessary for wavelength unit conversions. For
example:
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> > > asJy(BlackBody(6000)(NM(300)) # evaluate at 300 nm, return in Janskys
> > > source = GaussianSource(EV(.5), EV(.1)) # centered at .5 electron volts
> > > source(NM(10), funits=Fnu) # or
> > > asFnu(source(NM(10), NM(10))

5.4 The upside to object-oriented programs
A major goal of Object-Oriented Languages is achieving as much decoupling of dependencies as possible.
The more one can isolate code dependencies and make it more modular, the fewer problems you will generally
have when changes are needed. When you must make changes in many places to add a new feature, you are
much more likely to break something. Having to deal with many modules and locations at once makes it
di�cult to really understand what is going on; it is far easier to get confused.

This is done by trying bring the code that manipulates data as close to the data as possible. A mindset
that is focused on functions primarily (as C and Fortran are) forces one to do a lot of bookkeeping to keep
track of the data. Where is it? What things can I do with it? Typically it leads to lots of conditional code
that says if it is this kind of data do this, if that, do that, and so forth. Add a new kind of data or variant,
and you must go and change many functions so that they can deal with it. Very Bad.

With objects, the code is kept with the object. Each object knows how to do what's required of it. These
may vary from object to object or may not. To add a new object that is supposed to 'play nicely' with
others, usually doesn't require making changes to the code of all the others. Often it doesn't require any.

The spectrum model example is a good illustration of that. To add a new model doesn't require handling
integration, units, redshift, or many other common e�ects. Most of the code for the model is that focused on
what the model is all about: determining the �ux at a given wavelength. And that's primarily it. Secondarily
it is giving hints about where the model changes the most. And very little else. The cost to add models is
about as minimal as it could be. Likewise, the general algorithms such as that doing the composite evaluation
or integration, don't need to know anything about the speci�cs of any of the models. This is generally a
Good Thing. (This is referred to as 'data hiding' or 'encapsulation' in the OO biz.)

Despite the simplicity of the model code, it is quite capable of generating quite complex networks of
sources and transmission functions. The simplicity of organization does not prevent it from being used for
complex cases. Given the operator overloading features (something not available in Java), it is possible
to make these networks correspond very closely to their mathematical equivalent. Unlike synphot, it isn't
necessary to form an expression as a string and write a program to parse and evaluate it. The code is the
de�nition! (Lest those who say that this is bad, Python makes it trivial to evaluate strings containing such
code, so it's just as easy to do it the other way).

Much of the power of Object-Oriented Programming comes from what is called 'polymorphism'. What
it means is having several objects that share some common behavior and attributes, but possibly have much
that is di�erent as well. The spectral components example very much makes use of this. They all must be
able to evaluate themselves at requested wavelengths (how they do so is entirely up to them). They must
give a set of wavelengths that sample them well. They must handle redshifts, normalization, and integration.
They must support basic addition and multiplication. Some of these behaviors are handled by the parent
class, some by the child classes. But they all must meet these standard behaviors. They may have other
nonstandard methods and attributes. There is nothing wrong with that. But the point is that it allows one
to write very general software that takes a wide variety of components and handles them uniformly. They
handle their speci�c di�erences internally.

If you �nd you are writing a lot of functional code that has many tests for the kind of data it is working
on, particularly the same set of tests in di�erent functions, that is usually a sign that the problem is a good
candidate for polymorphic objects.

Notice that most of the enhancements did not require a great reworking of the architecture. Given a
properly designed framework, quite powerful enhancements are possible without extensive reworking.

The nice thing about Python is that it doesn't force you to put everything in an object-oriented framework.
You can make it entirely functional or a hybrid. A good example of a hybrid approach is numpy where many
operations are handled by functions, not methods, primarily since it is a better match to mathematical
convention.
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5.5 The downside
Invariably there is some bad with the good. Object-oriented technology has its downside. One is that
although it is very good at reducing dependencies, the manner in how that is done can make it more di�cult
to follow what actually is happening as time progresses. This can make debugging more involved if there are
many objects involved, and many jumps from one object to another. Those used to procedural programming
(which by its nature is more time-oriented) can �nd this more frustrating to understand. Taking this
speci�c example, one sees the �ow of program control jump from child class to parent and back, and from
one object's method to another that it refers to. The �ow is just not as linear through the �le as many
procedural programs would be.

This is partly because objects rely heavily on indirection, either through the objects they link to, or the
classes they inherit from. Indirection is an indication of greater abstraction, more power, and a correspond-
ingly greater power to confuse.

Some problems don't lend themselves to object orientation. The example does, but there are cases that
are hard to frame this way. It is a mistake to try to force all problems into one approach.

Those that are experienced at procedural programming tend to have a harder adjustment to an object-
oriented approach. It's quite easy to fall into a pattern of using classes in a mostly procedural way. The
best guard against that is by reading good examples of OO design (in real projects) or have others that have
that kind of experience review your code.

The previous section glibly asserted that example showed how �exible the OO architecture was given a
proper framework. Achieving the proper framework is often not trivial. The ability to do so comes with
experience and some analysis of the problem. Typically, OO design puts more emphasis on the analysis and
design phase than does a procedural approach. A good design makes it easy to extend and maintain, a bad
design not. The same certainly can be said for any approach (including procedural), but an OO approach
is more sensitive to the quality of the design. Having said that, Python is so productive that one should
particularly avoid becoming paralyzed by the analysis and design phase. Experimentation is an important
part of the design process and Python makes that comparatively easy. Do not make the mistake of trying
to �gure everything out before starting. Think a little, try something, start over.

5.6 Loose ends
Taking a case study approach to OO programming in Python means some mechanical details have been
passed over. It's not possible to cover them all, but some of the basics will be elaborated.

5.6.1 Method inheritance and overloading
When you use a method for an object Python will search for the method de�nition up the inheritance chain.
It sees if the method exists for the speci�c class that is being used. If it doesn't exist there, it looks at the
class that it inherits from to see if that class de�nes it. If not and that class inherited from yet another,
that one will be searched for the method until there are no further inherited classes (then an exception is
raised). Overloading a method means that it exists in an inherited class and it is rede�ned in a descendant
class. Generally speaking, overloading a method means that the method should support the same argument
interface that the original method does (nothing enforces that), though it usually is considered permissible
to allow extra optional arguments and keywords.

5.6.2 Object initialization
One thing to realize is that, unlike some other OO languages, Python requires fairly explicit instructions
regarding objects. One such area is in their creation. All classes have an implicit default de�nition of
__init__ that exists if they do not de�ne one. So it is not necessary to de�ne __init__ (even if inheritance
is not used). But realize that no attributes can be created at initialization if __init__ is not de�ned since
that is where they must be set (it is always possible to add them any time later if you don't use special
features to prohibit them). If you inherit from a class that does de�ne its own __init__ and you don't de�ne
__init__ in the subclass, then the original __init__ will be used. If you wish to de�ne a new __init__
for the subclass and invoke the parent class __init__ you must do so explicitly (as shown in the example in
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section 5.1.5). Or you may completely ignore the parent class __init__ if you are replacing its functionality
entirely. You have full control, but you must be explicit about what initializations you wish to be done.

5.6.3 Multiple inheritance
Python permits classes to inherit from more than one class. When these parent classes share the same
method names, Python has clear (but involved) rules about determining the search order for which one it
uses (called �method resolution order�). It is considered good practice to use multiple inheritance as sparingly
as possible. See http://www.python.org/2.3/mro.html.

5.6.4 New-style vs old-style classes
With version 2.2 Python introduced �new-style� classes that provided many more capabilities for classes. For
most beginners, these distinctions are not relevant since they involve fairly advanced concepts. All Python
data types are now �new-style� classes. Old-style classes were retained for compatibility purposes. If your
class de�nition does not inherit from �object� or a built-in Python data type (lists, strings, etc.) it is an
old-style class, otherwise it is a new style class. Again, you are not likely to need to know or care yet; this
explanation is to explain why you may see these two variants:

class Class: # old style
class Class(object): # new style

When Python 3.0 shows up, it will only support new style classes and then inheriting from object will be
optional. (ref. http://www.python.org/2.2.2/descrintro.html)

5.6.5 Duck typing
Making use of polymorphism does not require that the objects inherit from a common class. It is a common
idiom in Python to allow objects that may have no common parent to be used in the same context so long
as they support the needed behaviors. For example, there are many things that expect a '�le-like' object.
Something that can be written to and read from as though it were a �le. So long as you provide an object
that has the needed methods and attributes, that's good enough. Likewise, when writing your own classes
and code, be careful not to try to be too speci�c on the types of arguments. It is usually better to enclose
attempts to use them in try/except blocks rather than enforce that they be a certain type or class. In this
way the code will be much more �exible.

And the phrase �Duck typing�? It derives from the philosophy that if something quacks like a duck, walks
like a duck, looks like a duck, etc., as far as you are concerned, it is a duck. It doesn't actually have to be
of type �Duck� for it to be acceptable. Use of this phrase indicates that this approach is being used.

5.7 What you haven't learned about Python (so if you are interested, go look
it up)

5.7.1 iterators
Iterators are a powerful extension to the language. They are objects that can be iterated over in that one
can ask for the next item until the end is reached. They are like sequences in some respects but cannot be
indexed arbitrarily. They can be in�nite. Many things in Python that used to return lists now are iterators.
Iterators can be used in for statements.
See http://www-106.ibm.com/developerworks/library/l-pycon.html?n-l-9271.

5.7.2 generators
Generators are similar to iterators except they allow one to write functions that repeatedly return values
and retain the state of where they last left o�.
See http://www-128.ibm.com/developerworks/linux/library/l-pycon.html.
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5.7.3 list comprehensions
These are a convenient way of creating lists. An example explains best:

> > > newlist = [i**2 for i in range(10)]

creates a list of all squares of 0 through 9.
See http://www.secnetix.de/~olli/Python/list_comprehensions.hawk for the full details.

5.7.4 sets
Python has recently introduced a set data type (otherwise known as unordered collections).
See http://www.python.org/doc/2.4/whatsnew/node2.html.

5.7.5 metaclasses
New-style classes provide some very powerful capabilities, particularly with regard to 'metaclass' capabilities.
These generally are quite advanced aspects, considered 'brain-exploding' by many.
See http://www.python.org/2.2.2/descrintro.html#metaclass if you are fearless.

5.8 The Zen of Python
(author: Tim Peters, a Python legend)

• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Readability counts.

• Special cases aren't special enough to break the rules.

• Although practicality beats purity.

• Errors should never pass silently.

• Unless explicitly silenced.

• In the face of ambiguity, refuse the temptation to guess.

• There should be one� and preferably only one �obvious way to do it.

• Although that way may not be obvious at �rst unless you're Dutch.

• Now is better than never.

• Although never is often better than *right* now.

• If the implementation is hard to explain, it's a bad idea.

• If the implementation is easy to explain, it may be a good idea.

• Namespaces are one honking great idea � let's do more of those!
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Exercises
1. Complete the dictionary inheritance example by completing new versions of the has_key, update, get,

and setdefault methods.

2. Add support for tabular source and transmission spectra to the spectrum example
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6 Interfacing C & C++ programs
This tutorial will start with an overview of all the approaches to interfacing with C and C++ (or otherwise
trying to get performance improvements), followed by examples of manually writing wrappers for C functions,
ending with an example that uses numpy arrays as arguments to the C function.

6.1 Overview of di�erent tools
There are, fortunately or unfortunately depending on your view, many ways to interface Python to C and
C++ code (or achieve equivalent performance). A single tutorial cannot hope to cover all of them. Or
even two. But a short overview of many (but not all!) of the possibilities and what factors should be
considered in choosing them will be given. The following link gives a good example of using the di�erent
approaches and the speedups that resulted (be careful not to overgeneralize from the one example though):
http://www.scipy.org/documentation/weave/weaveperformance.html

Manual wrapping: This is the case of explicitly using the Python C-API. In many respects this is the most
work, but also has the least dependencies on other tools and is generally the most portable solution.
One advantage of this approach is that you will learn what goes on under the hood (compared to using
the more automatic tools described below), and learn something about Python internals. This is also
a disadvantage. This is the method that this tutorial will cover.

SWIG: SWIG stands for Simpli�ed Wrapper Interface Generator. This is a mostly automated tool for
computer generating the interfacing code between C functions and Python. It generally avoids needing
to learn as much about the Python C-API (though customizations may require some use of the Python
C-API). Although it avoids having to learn about the Python API, it means learning about how to
use SWIG, which has its own learning curve. It generally is most useful if one is trying to interface a
large, existing C library for which writing Python wrappers would be very tedious. Another advantage
of SWIG is that the SWIG software does not need to be distributed with the C libraries. One can
generate the wrapper code on a build machine and distribute the code it generates. In this respect it
is as portable as manual wrapping. (http://www.swig.org)

weave: Weave is a tool that allows one to: 1) write 'in-line' C code (written as strings within Python source
�les) that can be automatically wrapped, built, and imported on the �y, 2) Turn array expressions into
corresponding C++ code, also wrapped, built and imported on the �y, or 3) wrap existing C extensions.
It requires installing scipy. It does not currently work with numarray for the array facilities (though we
are close to porting weave to work with numarray). It's array facility allows one to write Python syntax
code for arrays that may not be very e�cient, and then, without change, have the same code converted
to C++ and run much faster (e.g., where you must iterate over array elements in an explicit loop). It
generally avoids much of the pain of writing wrappers (and even C code for array expressions), but it
is not as good a tool as SWIG is for wrapping existing C libraries, and its dependence on scipy is a
drawback (currently). Using weave limits C code to the Python context (i.e., the C code is not usable in
other C programs) It requires a C++ compiler as well. (http://www.scipy.org/documentation/weave)

PyCXX: This is explicitly a tool for wrapping C++ code and to make the interface between C++ objects
and Python OO facilities more transparent and convenient (matplotlib makes use of it). SWIG used
to support C++ poorly, but has improved greatly recently so it could also be considered for wrapping
C++ code. (http://cxx.sourceforge.net)

Boost.Python: Another means of wrapping C++ code. (http://www.boost.org/libs/python/doc/)

ctypes: A module that allows access to existing sharable modules (not the kind written explicitly for
Python) to execute functions present in the module. The conversion of data types is handled by
the module as well as handling pointers and structures. In e�ect it lets you do the wrapping at
the Python level. The advantage of this approach is that it allows direct access to existing li-
braries without needing to generate C wrapping code. But there are limitations to what it can
do, and it forces dealing with platform speci�cs of sharable libraries to the 'wrapping' Python code.
(http://starship.python.net/crew/theller/ctypes/)
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Pyrex: Allows writing code in a pseudo Python syntax that will be turned into C code. How much faster it
is depends on how you write the pseudo Python (the more speci�c one can be about types, for example,
the more likely the speed will improved), though it usually is slower than code written directly in C.
Doesn't do anything special about numeric arrays (and thus not particularly convenient to use in the
array context). Generally much easier to write than the manual method. Code so written is inextricably
bound to the Python context. (http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/)

Psyco: A special implementation of Python for Intel processors. that does special optimizations internally.
This does not require recoding in any way except to give directives about optimization. Can be
very fast in some cases; however it doesn't do much for numeric arrays, particularly if you must
operate on non-Python numeric types (anything but �oat doubles, long ints, and complex doubles).
Not at all portable since it only works on Intel processors and requires a special version of Python.
(http://psyco.sourceforge.net)

6.1.1 Summary
If you are adverse to writing C at all, try Pyrex or weave (in mode 2), or psyco if you don't mind binding
your solution to Intel processors. If you want to minimize the work of wrapping new C code, use weave
(if installing scipy is not an issue). If you wish to interface an existing C library of a signi�cant size (i.e.,
large number of functions), consider SWIG. Use PyCXX, Boost.Python, weave, or SWIG to wrap C++ code
(which depends on what features of C++ you are using and how you wish to interface to Python). Use
ctypes if wrapping an existing library is not feasible (e.g., you don't have a compiler available). If you just
have a small number of C functions to wrap, you may �nd manual interfacing easiest to do, particularly if
one of the examples is close to what you need to do and will serve as a template.

6.2 Overview of manual interfacing
This guide is intended to give a basic overview of how to call C functions from Python by hand. Even if you
end up using some of the alternatives to writing extensions, it still is good to understand what is going on
underneath between Python and C.

There is already documentation in the Python distribution on how to interface C programs (Extending
and Embedding the Python Interpreter & Python/C API Reference Manual); but its size is imposing and
di�cult for many to get started with. That documentation is quite useful once you get the basic idea of how
the Python C API works.

This tutorial will not cover calling Python from C, nor will it describe how to develop a new Python type
or class in C.

6.3 A few basic concepts before getting started
6.3.1 How Python �nds and uses C extensions
The vast majority of C extensions use the dynamic loading feature of all modern operating systems. Suppose
you want to write a C extension that you wish to import as bozo. Python will �rst search directories in
its path for a bozo package directory, then for an extension module. (Each directory is searched for each
possible form of a module before proceeding to the next directory in the path.) The acceptable extension
module names are: bozo.xxx or bozomodule.xxx, where the �lename extension .xxx is generally .so for
Unix (including Mac OS X) and .pyd or .dll for Windows. (If neither a package or extension module is
found then it looks for a Python module in its various forms.) When it �nds bozomodule.so, it will then
make a system call to examine all public symbols in that dynamically loadable module. It is looking for only
one, called initbozo). From that it �nds everything else (more details later). The important point is that
it is rare that one needs to statically link Python with an extension. The module may not even have been in
existence when you started your Python session (indeed, this is what allows some tools to compile and load
new extensions on the �y from an existing Python session).
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6.3.2 Compiling and Linking C Extensions
The details of compiling and linking C extensions vary from platform to platform. These are given in detail
in the Extending and Embedding the Python Interpreter reference. It is usually far easier is to use distutils
to handle the details of building C extensions

6.3.3 A Simple Example
[bozo.c]

#include <Python.h>

static PyObject *
times_two(PyObject *self, PyObject *args)
{

int val;
if (!PyArg_ParseTuple(args, "i", &val)) \

return NULL;
return Py_BuildValue("i", 2*val);

}
static PyMethodDef bozoMethods[] = {

{"times_two", times_two, METH_VARARGS, "Double any integer"},
{NULL, NULL, 0, NULL} /* Sentinel */

};
PyMODINIT_FUNC
initbozo(void)
{

(void) Py_InitModule("bozo", bozoMethods);
if (PyErr_Occurred())

}
[setup.py]
from distutils.core import setup, Extension
setup(name="bozo", version="1.0",

ext_modules=[Extension("bozo", ["bozo.c"])])
# To build type "python setup.py build"
# The sharable will appear in one of the build subdirectories
# of the source directory.
# To install: "python setup.py install"

This represents a new C extension module which will, when built, end up as bozomodule.so, be imported
as bozo, contain one and only one function, called times_two, that takes an integer argument and returns
that integer value multiplied by two. That is,

> > > import bozo
> > > bozo.times_two(2)
4

Line-by-line Explanation
All Python C extension functions have one of two possible signatures, namely, they either take two or

three PyObject* arguments, and return a PyObject* (this example only takes two). PyObject* is the
generic type used for all Python values whether they are built-in types or objects. The function is declared
as static so that it is not exposed as a public symbol (Python is able to access it through the mechanism
described later). The �rst argument is a reference to self when it is used as a method call (and because
this is not a method de�nition, is not used). The second is expected to be a Python tuple that contains all
of the arguments provided when calling the function at the Python level.
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There are many specialized functions to obtain the contents of Python tuple objects. Since all function
calls at the C level must unpack the arguments from this tuple, there are some standard higher-level functions
provided to handle the tedium of doing so in one call. In this case it is PyArg_ParseTuple (there are other
variants, e.g., if keyword arguments are expected). PyArg_ParseTuple takes the tuple argument as its �rst
argument, a format string as its second argument, and pointers to variables that are to receive the values
unpacked from the tuple as the rest of the arguments. The format string indicates how many and what kinds
of values are expected. In this particular case, "i" tells it to expect an integer value (correspondingly "ifs"
tells it to expect 3 values, an integer, �oat, and string). Here the integer value will be put into the variable
val, thus a pointer to val is passed.

Since Python has no type checking this seems very risky. What if someone passed a di�erent type, such
as a string? This is why it is imperative to check the return value of the PyArg_ParseTuple function. If the
values are compatible with the format string, then the function will return with a nonzero value, otherwise
it returns with a zero value. Hence in the example, the return value is checked to see if it is zero. If it is,
the function returns with a NULL value. C extension functions called by Python that return NULL values
indicate that Python should raise an exception.

The function Py_BuildValue e�ectively does the reverse; it returns a Python object suitable for returning
to Python, built from the format string and a corresponding number of arguments that provide the values
(which may be a single value or a tuple depending on whether one or more values are provided). Here there
is only one value, an integer (the original value multiplied by 2).

The rest of the module contains the mechanism used to expose this function to Python. The next item
is an array of structs that contains a record for each function de�ned. Each entry contains the Python
name for the function, a reference to the function itself, some information about the argument conventions
(METH_VARARGS means that it takes two arguments; METH_KEYWORDS means that it takes three), the last
argument being the keyword dictionary provided by Python). The NULL values in the last entry indicate
the end of the struct array (note that this function table is also declared static to make it private).

Finally, there is one public symbol in the module. Python expects to see a symbol of the form initname,
in this case initbozo. This function calls a Python module initialization function with the method table
de�ned just before as the second argument (the name of the module is the �rst argument). When Python
imports the module, it will check to see if there were any errors on initialization; there is no need to check
for an error on the Py_InitModule call unless one intends to print a more descriptive error message as to
why it failed.

So when Python opens this module, it seeks a function named initbozo and executes it. By doing so it
obtains a reference to all the functions de�ned in bozoMethods which it will use to call the functions when
needed.

6.3.4 So what about more complicated examples?
Rather than wade through complex examples, we will discuss the issues involved with more complex cases
and refer the reader to the documentation for the full details. The main point is to put these issues into
context. A more complex example is annotated in section 6.5.

6.3.5 But what about using arrays?
Those impatient to see arrays used in a C extension may jump ahead to Section 6.6. Except for the part
dealing with reference counting (explained in 6.4.4) it should be understandable.

6.4 General Pointers
The simplest interfaces are generally when only simple objects (i.e., values close to primitive types such as
ints, �oats, and strings) need to be passed to and from C functions. In those cases one needs little more
than PyArg_ParseTuple (or PyArg_ParseTupleAndKeywords), and Py_BuildValue to accomplish the task.
Realistically, if that is all one needed to pass and receive, it is likely one didn't need to write a C extension
in the �rst place. For numerical processing, it will often be true that the only other complex object that
must be handled is a numpy array object (ndarray), and perhaps lists, tuples, and dictionaries. Accessing
ndarrays will be addressed in the next section.
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Accessing other kinds of Python objects is accomplished by using the Python C API. Lists, tuples, strings
and dictionaries have many functions to create, modify and access these objects. For example, there are calls
to get the ith element from a list. Function calls to access de�nite types such as these are considered part
of the concrete protocol; functions part of the abstract protocol allow accessing more abstract types such as
sequences, mappings or Python objects without forcing the object to be a speci�c type. There are many
calls to manipulate Python objects, for example, to get object attributes or make method calls. Generally
one can perform the same operations on Python types and objects in C that one can in Python. It's just
a lot more tedious. You must make sure that types are correct, and handle error cases. Not to mention
reference counting (more on that later).

It is usually a good idea to separate the C code into a wrapper part (the component that handles
extracting all the information from Python to pass to another C function that is generic, i.e., has no particular
dependence on Python). If one is trying to interface to existing C functions, this approach is the only sensible
one. When one is writing a new type for Python or is performing very intricate operations on Python objects,
this is not possible at all; the whole extension is interwoven with the Python API.

6.4.1 Handling Calling Arguments
PyArg_ParseTuple() and its variants have a number of options to make handling calling arguments more
convenient. In particular, you may associate a converter function with an argument to automatically call it
to convert the argument to another type (see the O& option). One can use | in the format string to separate
the required arguments from the optional arguments and end the format string with :<functionname> to
indicate that any error in the calling sequence should use the given name. See section 5.5 of the C-API
reference for full details.

6.4.2 Returning None
Returning Python None values is fairly simple (i.e., a return value that is interpreted as None within Python;
note, this is quite di�erent than returning NULL values that signal that Python should raise an exception):

Method 1:

return Py_BuildValue("");

Method 2:

Py_INCREF(Py_None); # Explained in section on reference counting
return Py_None;

6.4.3 Exceptions
As previously mentioned, exceptions are signaled by returning a NULL value. More work is required if an
associated string and exception type are desired. A number of functions are provided to handle exceptions.
The most useful for simple cases are:

PyErr_SetString(PyObject *exc, char *msg);

This sets the string used by Python to report the exception. The �rst argument is given an exception value.
Any Python exception type can be used; the corresponding name in C for a Python exception generally has
PyExc_ prepended to the corresponding name (e.g., PyExc_ArithmeticError for ArithmeticError). The
following illustrates:

PyErr_SetString(PyExc ValueError, "zero value not permitted");

To check whether errors have occurred in a series of Python API calls (as opposed to errors detected by your
own C code):

PyObject *PyErr_Occurred()
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Which returns the current exception object if one did occur and NULL otherwise.

PyErr Clear()

Will clear any error states.

PyErr_Format(PyObject *exc, const char *format...)

A convenience function that sets the error string using the format string and extra arguments provided (a
la printf) and returns NULL, See Chapter 4 in the C API reference for full details.

6.4.4 Reference Counting
Without a doubt, the most error-prone aspect of writing more complex C extensions is handling reference
counts properly. Reference counting is how Python manages memory. Every time an object references
another, the reference count of that object is incremented. Every time a reference is removed, the reference
count is decremented. After being decremented, if the count reaches 0, Python frees the memory associated
with that object (and calls its destructor if necessary). When you write a C extension that relies on Python
objects persisting past that call, then it is essential to ensure that the reference counts are appropriately
adjusted. Not doing so may result in segfaults or other catastrophic failures.

If you are lucky, such errors only result in memory leaks. Like many other C problems, such problems
may be erratic and hard to reproduce and debug. Unfortunately, the Python API is not entirely consistent
in its reference counting conventions. Pay attention to the API documentation regarding this issue rather
than assuming!

Python API calls may return two kinds of references to Python Objects (i.e., a PyObject* pointer):
�owned� and �borrowed�. An owned reference is one for which the Python API has incremented the reference
count for you; a borrowed reference is when the reference count has not been incremented for you. In the
latter case, the C code cannot depend on that object remaining available at a later time (either by returning
to Python and being called again, or by calling Python API functions that may change the state of Python
objects).

These concepts are better illustrated with some examples. Typically API calls that create new Python
objects return an owned reference. An example is the PyString_FromString function. This function takes
an ordinary C string and returns a Python string object. This string object is an owned reference meaning
that the function has increased the reference count in the expectation that the calling program needs to keep
the object around until it explicitly wants to release it. The calling C function (i.e., your code) can do one
of two things with that owned reference. It can do various processing steps with that Python string, and
then decrement the reference count when �nished (in e�ect, giving up ownership). The object will then be
freed from memory if nothing else has obtained ownership in the meantime. The other option is to return
that string to Python without decrementing its reference count.

If your C function returns a Python object back to Python as a return value, then it must be an owned
reference since Python is assuming that everything you return is an owned reference (it has assumed that
you've appropriately had the reference count incremented, either directly or indirectly). In the case of the
Python string just mentioned, if you explicitly return that string (e.g., return PyString_FromString("Hello
World");) then that object is presumed to be owned. In this example it is since the API call has implicitly
obtained ownership for you. It would be a great mistake to decrement the reference count to the object
before returning it (it would likely result in a segmentation fault or similarly nasty ending).

Many API calls return borrowed references. For example, if you use PyTuple_GetItem to obtain a
reference to an item in a tuple you will get a borrowed reference. There is no need to decrement the
reference count if the item is no longer needed after the next call to a Python API function or return from
the C function to Python. On the other hand, if you wish to return that object to Python, you must
increment the reference count to make it owned or su�er a horrible fate.

Incrementing reference counts when you aren't supposed to or neglecting to decrement reference counts
when you are supposed to will lead to memory leaks.

The macros Py_INCREF() and Py_DECREF() are used to manipulate reference counts of the PyObject*
pointer supplied as an argument. Note that it is necessary to obtain ownership of Py_None before returning
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it explicitly (Py_BuildValue("") does that implicitly). There are corresponding macros (Py_XINCREF() and
Py_XDECREF())that will appropriately handle the case when the argument is a NULL pointer (when nothing
is done)

See section 1.2.1 of the C API reference for full details.
One can build Python with some special options to make help debugging reference count problems in

extensions easier. Consult Misc/SpecialBuilds.txt in the Python source tree for instructions on how to
do this. The most useful (and simplest) option is probably the �rst, Py_REF_DEBUG, which shows the total
number of reference counts after each interactive command.

6.4.5 Using debuggers on Python C Extensions
To make using debuggers easier, use the �./configure --with-pydebug� con�guration option to con�gure
the Python source tree for debug mode before installing Python. Such �debug Pythons� are generally easier
to use in an extension debugging context since they con�gure distutils to compile and link extensions for
debugging.

6.4.6 How to Make Your Module Schizophrenic
Signi�cant C extension modules often contain functions useful for other writers of C extensions (numpy is
a good example of such a case). However, the usual style for Python extensions is that they only expose
one public symbol, they can't be used in the usual way to link other C libraries or extensions to (actually,
the reasons have more to do with �nding portable ways of making extension modules linkable rather than
requiring private function). The clever Python developers have developed a highly portable solution, albeit
somewhat obscure and ugly. If you don't need to do this yet, ignore this section!

The short explanation is that the solution is centered on developing an include �le for your extension
module that exposes the private functions through a function jump table (an array of function pointers to the
private functions) and macros (to make the awful syntax of referencing a function pointer array appear as a
simple function call). This approach requires code that uses the extension as a library to call an initialization
function that �lls in a pointer to the jump table before any attempt to use the API functions.

For the details read Providing a C API for an Extension Module in the Extending and Embedding the
Python Interpreter reference. Read it a few times ;-).

6.5 A More Complex Example
[dp wrap.c]

/* Separation into wrapper code artificial since called function
** has Python API calls too */
/* Lacking some error checking */

#include <Python.h>
extern PyObject * dp(PyObject *);
extern PyObject * add_spam(PyObject *);

static PyObject *
print_wrap(PyObject *self, PyObject *args)
{

PyObject *obj, *rval;
if (!PyArg_ParseTuple(args, "O", &obj))

return NULL;
rval = dp(obj);
if (rval)

return Py_BuildValue("O", rval);
else

return NULL;
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}

static PyObject *
add_spam_wrap(PyObject *self, PyObject *args)
{

PyObject *obj;
if (!PyArg_ParseTuple(args, "O", &obj))

return NULL;
return add_spam(obj); /* note PyBuild_Value not used since:

** 1) returned object is already owned
** 2) single value doesn't need tuple
*/

}

static PyMethodDef dpMethods[] = {
{"dpprint", print_wrap, METH_VARARGS,

"Returns all numeric values in a dictionary in a list"},
{"add_spam", add_spam_wrap, METH_VARARGS,

"appends ', and spam' to given string representation of object"},
{NULL, NULL, 0, NULL} /* Sentinel */
};

PyMODINIT_FUNC
initdp(void)
{

/* Note use of alternate module init that allows defining
** Docstring for Module xs
*/
(void) Py_InitModule3("dp", dpMethods, "Two silly and useless functions");

}

[dp.c]

#include <Python.h>
#include <string.h>
#include <stdlib.h>

PyObject* dp(PyObject *dict)
{

/*
** Extract all numeric values in a dictionary and return as a list.
** Raise exception if not a dictionary
*/
int dictsize, i;
PyObject *dlist, *dkeys, *key, *ditem;
if (!PyDict_Check(dict))
{

PyErr_SetString(PyExc_TypeError,
"Argument must be dictionary");

return NULL;
}
dictsize = PyDict_Size(dict);
dlist = PyList_New(0);
dkeys = PyDict_Keys(dict);
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for (i=0; i<dictsize; i++)
{

key = PyList_GetItem(dkeys, i); /* borrowed reference */
ditem = PyDict_GetItem(dict, key); /* borrowed reference */
if (PyNumber_Check(ditem))
{

Py_INCREF(ditem); /* Important! */
PyList_Append(dlist, ditem);

}
}
/* Free up remaining unneeded owned python object before returning */
Py_DECREF(dkeys);
return dlist;

}

PyObject* add_spam(PyObject *obj)
{

/*
** Add the string ', and spam' to the string representation of the object
*/
PyObject *pystr, *newstr;
char *str1, *str2;
int csize;
pystr = PyObject_Str(obj); /* should check for success */
str1 = PyString_AsString(pystr);
csize = PyString_Size(pystr);
str2 = (char *) malloc(csize + 20); /* leave space for ', and spam' */
strcpy(str2, str1);
strcat(str2, ", and spam");
newstr = PyString_FromString(str2);
free(str2);
Py_DECREF(pystr);
return newstr;

}

[setup.py]

from distutils.core import setup, Extension
setup(name="dp", version="1.0",
ext_modules=[Extension("dp", ["dp_wrap.c", "dp.c"])])

[dp_test.py]

"""Doctest module for dp extension
> > > dp.__doc__
'Two silly and useless functions'
> > > dp.dpprint.__doc__
'Returns all numeric values in a dictionary in a list'
> > > dp.dpprint({1:"hello","bozo":2})
[2]
> > > dp.dpprint([2])
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: Argument must be dictionary
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> > > dp.dpprint()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function takes exactly 1 argument (0 given)
> > > dp.dpprint({1:None, 2:3, 5:3, 6:1, 9:"None"})
[3, 3, 1]
> > > dp.add_spam([1,2])
'[1, 2], and spam'
> > > dp.add_spam.__doc__
"appends ', and spam' to given string representation of object" """

def _test():
import doctest, dp_test
return doctest.testmod(dp_test)

if __name__ == "__main__":
print _test()

6.6 numpy example
In principle, using numpy from C is handled in a similar way. The primary di�erence is that numpy has
its own C-API (much like each of the Python data objects do) that gives the programmer full access to the
contents of arrays. The Guide to Numpy book very completely documents the numpy C-API. This tutorial
should give you the foundation to understand the explanations in that book.

First we write the function to be wrapped; in particular a 1-d convolution function:

[convolve.c]
#include "Python.h"
#include "numpy/arrayobject.h"
static void Convolve1d(long ksizex, npy_float64 *kernel,

long dsizex, npy_float64 *data, npy_float64 *convolved)
{

long xc; long halfk = ksizex/2;
for(xc=0; xc<halfk; xc++)

convolved[xc] = data[xc];
for(xc=halfk; xc<dsizex-halfk; xc++) {

long xk; double temp = 0;
for (xk=0; xk<ksizex; xk++)

temp += kernel[xk]*data[xc-halfk+xk];
convolved[xc] = temp;

}
for(xc=dsizex-halfk; xc<dsizex; xc++)

convolved[xc] = data[xc];
}

Notice that this function has no explicit dependencies on numpy or Python (well, it does make use of the
npy_float64 typedef that the numpy include �le (arrayobject.h) provides, but double could have been used
as well). It is a straightforward C function that takes 2 pointers to double precision 1-d arrays, along with
corresponding sizes for the arrays, and a pointer to the output array of the same type and size as the input
array (not kernel).

The following begins the wrapper part of the �le.

static PyObject *
Py_Convolve1d(PyObject *obj, PyObject *args)
{
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PyObject *okernel, *odata;
PyArrayObject *kernel=NULL, *data=NULL, *convolved=NULL;
if (!PyArg_ParseTuple(args, "OO", &okernel, &odata)) {

PyErr_SetString(PyExc_ValueError,
"Convolve1d: Invalid number of parameters.");

goto _fail;
}

Two PyObject pointers are de�ned for the two expected arguments, and the object pointers for those
arguments are obtained.

kernel = (PyArrayObject *) PyArray_ContiguousFromAny(
okernel, NPY_FLOAT64, 1, 1);

data = (PyArrayObject *) PyArray_ContiguousFromAny(
odata, NPY_FLOAT64, 1, 1);

if (!kernel || !data) goto _fail;

What happens in this part of the code needs some background explanation. Typically a C programmer
expects arrays to be a simple, contiguous array of values in memory, and in the C context, this is the normal
convention. But what numpy considers arrays may not be this simple. Arrays may not be contiguous since
a sliced, strided view of an array de�nes an array to be to be non-contiguous series of values. What's more,
the values in the array may be byte-swapped from the native representation of the processor, and it may
not even be properly memory-aligned. Dealing with such arrays places a large burden on the programmer
to iterate through all the values in the array (something numpy handles behind the scenes).

The two calls to PyArray_ContiguousFromAny for each of the respective arguments �rst ensures that the
argument is an array or a Python object that can be cast into an array (e.g., a Python list). If not, a NULL
value is returned. If the argument is an array which is not contiguous, properly byte-ordered, or aligned,
then a copy of the array will be generated that is. If the type speci�ed in the function call is di�erent than
the type of the array (the presence of NPY_DOUBLE indicates that a float64 array is being requested), a copy
will also be made. The 3rd and 4th arguments specify the minimum and maximum acceptable values for the
number of dimensions. If the input array is the right type and satis�es the other conditions, the function
simply returns the input argument, otherwise it returns the pointer to the new array copy. In short, these
function calls ensure you get data in an easily used form and of the type requested.

convolved = (PyArrayObject *) PyArray_FromDims(
data->nd, data->dimensions, NPY_FLOAT64);

if (!convolved) goto _fail;

The PyArray_FromDims function call creates a new array from scratch given the speci�ed shape and type.
At this point it is worth pointing out that the 'array' pointers are not themselves pointers to C arrays but
instead pointers to Python data structures. This data structure contains information about the array such as
where the actual array data are located, the type, number of dimensions, the size of each dimension, strides,
and other information. This information is outlined in the previously referenced numpy chapters (xxx). We
will only refer to those structure members necessary for this simple example. So the member nd refers to the
number of dimensions and the member dimensions is a pointer to an array of data dimensions (of length
nd). After this preparation, we are ready to call the function that we wrote to actually do the computation,
now using the properly cast data member of the array structure that points to the data array.

Convolve1d(kernel->dimensions[0], (npy_float64 *) kernel->data,
data->dimensions[0], (npy_float64 *) data->data,
(npy_float64 *) convolved->data);

After processing the arrays, they should be DECREF'ed if no longer used. After this completes successfully,
we can clean up (handling reference counts appropriately for the normal and error cases) and return the
result to Python.
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Py_DECREF(kernel);
Py_DECREF(data);
return PyArray_Return(convolved);

_fail:
Py_XDECREF(kernel);
Py_XDECREF(data);
Py_XDECREF(convolved);
return NULL;

}

Finally, the rest of the code needed by Python to see the new function:

static PyMethodDef convolveMethods[] = {
{"convolve1d", convolve1d, METH_VARARGS,

"convolve 1-d array"},
{NULL, NULL, 0, NULL} /* Sentinel */
};

PyMODINIT_FUNC
initconvolve(void)
{

import_array() /* Note essential initialization call for numpy! */
(void) Py_InitModule("convolve", convolveMethods);

}
[setup.py]
import numpy
def configuration(parent_package=�,top_path=None):

from numpy.distutils.misc_util import Configuration
config = Configuration('convolve',parent_package,top_path)
config.add_extension('convolve',

sources=["convolve.c"],
include_dirs = [numpy.get_include()])

return config
if __name__ == "__main__":

from numpy.distutils.core import setup
config = configuration(top_path=�).todict()
setup(author='Smooth Operator',

author_email = 'con@stsci.edu',
description = '1D array convolution function',
version = '1.0',
**config)
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Appendix A: Python Books, Tutorials, and On-line Resources
The Python web site (www.python.org) contains pointers to a great deal of information about Python
including its standard documentation, conferences, books, tutorials, etc. In particular, the following links
will contain up-to-date lists of books and tutorials:

• Books: www.python.org/moin/PythonBooks

• Tutorials: www.python.org/doc/Intros.html (all online)

Books of note for beginners that have some programming experience:

• Learning Python (2nd ed) Lutz & Ascher: Probably the standard introductory book

• The Quick Python Book by Harms & McDonald: some prefer the style of this one

• Python: Visual QuickStart Guide by Fehily: and others this one

• Dive Into Python: Python for Experienced Programmers by Pilgrim (free on-line version also available)

On-line tutorials or books:

• An Introduction to Python by van Rossum: The original tutorial

• A Byte of Python by Swaroop: essentially an on-line book.

• A Quick Tour of Python by Green�eld and White:
http://stsdas.stsci.edu/pyraf/doc/python_quick_tour (A bit dated but comparatively brief). PDF
also available.

Reference books:

• Python Essential Reference (2nd ed.) by Beazley

• Python in a Nutshell by Martelli

• Python Library Documentation (available free on-line)

Mailing lists:

• astropy: For astronomical packages (e.g. PyRAF, PyFITS, numdisplay):
http://www.scipy.net/mailman/listinfo/astropy

• numpy: http://sourceforge.net/mail/?group_id=1369

• matplotlib: http://sourceforge.net/mail/?group_id=80706

• ipython: http://www.scipy.net/pipermail/ipython-user/

Numpy: The most complete reference for numpy is the Guide to Numpy book written by Travis Oliphant.
While it is not free (it will eventually be so), it has a wealth of information about numpy, particularly about
the more advanced features and inner workings. It can be obtained from: http://www.tramy.us/. Free
documentation and tutorials can be found at: http://www.scipy.org/Documentation

Manuals for numpy, PyFITS, PyRAF, ipython, and matplotlib are all available. Google PyFITS, numpy
or PYRAF with �manual� to �nd those. The matplotlib User Guide is available on a link from the home page
(Google �matplotlib�). The ipython manual is available from ipython.scipy.org. The numdisplay instructions
are available at: http://stsdas.stsci.edu/numdisplay/doc/numdisplay_help.html
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Appendix B: Why would I switch from IDL to Python (or not)?
We do not claim that all, or even most, current IDL users should switch to using Python now. IDL suits
many people's needs very well and we recognize that there must be a strong motivation for starting to use
Python over IDL. This appendix will present the pros and cons of each so that users can make a better
informed decision about whether they should consider using Python. At the end we give a few cases where
we feel users should give serious consideration to using Python over IDL.

Pros and Cons of each
These are addressed in a comparative sense. Attributes that both share, e.g.., that they are interpreted and
relatively slow for very simple operations, are not listed.

Pros of IDL:
• Mature many numerical and astronomical libraries available
• Wide astronomical user base
• Numerical aspect well integrated with language itself
• Many local users with deep experience
• Faster for small arrays
• Easier installation
• Good, uni�ed documentation
• Standard GUI run/debug tool (IDLDE)
• Single widget system (no angst about which to choose or learn)
• SAVE/RESTORE capability
• Use of keyword arguments as �ags more convenient

Cons of IDL:
• Narrow applicability, not well suited to general programming
• Slower for large arrays
• Array functionality less powerful
• Table support poor
• Limited ability to extend using C or Fortran, such extensions hard to distribute and support
• Expensive, sometimes problem collaborating with others that don't have or can't a�ord licences.
• Closed source (only RSI can �x bugs)
• Very awkward to integrate with IRAF tasks
• Memory management more awkward
• Single widget system (useless if working within another framework)
• Plotting:

� Awkward support for symbols and math text
� Many font systems, portability issues (v5.1 alleviates somewhat)
� not as �exible or as extensible
� plot windows not intrinsically interactive (e.g., pan & zoom)
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Pros of Python:
• Very general and powerful programming language, yet easy to learn. Strong, but optional, Object

Oriented programming support

• Very large user and developer community, very extensive and broad library base

• Very extensible with C, C++, or Fortran, portable distribution mechanisms available

• Free; non-restrictive license; Open Source

• Becoming the standard scripting language for astronomy

• Easy to use with IRAF tasks

• Basis of STScI application e�orts

• More general array capabilities

• Faster for large arrays, better support for memory mapping

• Many books and on-line documentation resources available (for the language and its libraries)

• Better support for table structures

• Plotting

� framework (matplotlib) more extensible and general
� Better font support and portability (only one way to do it too)
� Usable within many windowing frameworks (GTK, Tk, WX, Qt...)
� Standard plotting functionality independent of framework used
� plots are embeddable within other GUIs
� more powerful image handling (multiple simultaneous LUTS, optional resampling/rescaling, alpha

blending, etc)

• Support for many widget systems

• Strong local in�uence over capabilities being developed for Python

Cons of Python:
• More items to install separately

• Not as well accepted in astronomical community (but support clearly growing)

• Scienti�c libraries not as mature:

� Documentation not as complete, not as uni�ed
� Not as deep in astronomical libraries and utilities
� Not all IDL numerical library functions have corresponding functionality in Python

• Some numeric constructs not quite as consistent with language (or slightly less convenient than IDL)

• Array indexing convention �backwards�

• Small array performance slower

• No standard GUI run/debug tool

• Support for many widget systems (angst regarding which to choose)
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• Current lack of function equivalent to SAVE/RESTORE in IDL

• matplotlib does not yet have equivalents for all IDL 2-D plotting capability (e.g., surface plots)

• Use of keyword arguments used as �ags less convenient

• Plotting:

� comparatively immature, still much development going on
� missing some plot type (e.g., surface)
� 3-d capability requires VTK (though matplotlib has some basic 3-d capability)

Speci�c cases
Here are some speci�c instances where using Python provides strong advantages over IDL

• Your processing needs depend on running a few hard-to-replicate IRAF tasks, but you don't want to
do most of your data manipulation in IRAF, but would rather write your own IDL-style programs to
do so (and soon other systems will be accessible from Python, e.g., MIDAS, ALMA, slang, etc)

• You have algorithms that cannot be e�ciently coded in IDL. They likely won't be e�ciently coded in
Python either, but you will �nd interfacing the needed C or Fortran code easier, more �exible, more
portable, and distributable. (Question: how many distributed IDL libraries developed by 3rd parties
include C or Fortran code?) Or you need to wrap existing C libraries (Python has many tools to make
this easier to do).

• You do work on algorithms that may migrate into STSDAS packages. Using Python means that your
work will be more easily adapted as a distributed and supported tool.

• You wish to integrate data processing with other signi�cant non-numerical processing such as databases,
web page generation, web services, text processing, process control, etc.

• You want to learn object-oriented programming and use it with your data analysis. (But you don't
need to learn object-oriented programming to do data analysis in Python.)

• You want to be able to use the same language you use for data analysis for most of your other scripting
and programming tasks.

• Your boss makes you.

• You want to be a cool, with-it person.

• You are honked o� at ITT Space Systems/RSI.

Obviously using a new language and libraries entails time spent learning. Despite what people say, it's never
that easy, especially if one has a lot of experience and code invested in an existing language. If you don't
have any strong motivations to switch, you should probably wait.
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Appendix C: IDL/numpy feature mapping

IDL Python Equivalent
.run import (.py assumed)

reload(module) # to recompile/re-execute
ipython: run

@<filename> execfile('fileame')
ipython: run

exit control-D (MS windows: control-Z)
ipython: Quit or Exit

up-arrow (command recall) up-arrow

Operators
<,> (clipping)
a < 100.
a > 100.

Currently no operator equivalent. The functional
equivalent is choose(a<100, (a, 100.))

MOD %
# (matrix multiply) multiply.outer() is equivalent for some applications,

matrixmultiply() for others.
^ **

Boolean operators
and no operator equivalent

Python and operator is not the same!
or no operator equivalent

Python or operator is not the same!
not no operator equivalent

Python not operator is not the same!

Comparison operators
.EQ. ==
.NE. !=
.LT. <
.LE. <=
.GT. >
.GE. >=

Bitwise operators
and &
or |
xor ^
not ~
ishift(a,1) a< <1
ishift(a,-1) a> >1

Slicing and indexing Note: order of indices is opposite!
a(i,j) (IDL) equivalent to a[j,i] (Python)

i:j i:j (j element not part of slice)
i:* i:
*:i :i
a(i,*) a[:,i]
a(i:j:s) a[i:j:s]
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empty arrays and slices permitted (E.g., a[0:0] is an
array of length 0)
-i (indexing from end of array)
... (�lls in unspeci�ed dimensions)
NewAxis (add new axis to array shape as part of sub-
script to match shapes)
Slicing does not create copy of data, but a new view of
data.

Index arrays
newarr = arr(indexarr) newarr = arr[indexarr]
arr(indexarr) = valuearr arr[indexarr] = valuearr

Array Creation
fltarr()
dblarr()
complexarr()
intarr()
longarr()
bytarr()
make_arr()
strarr()

array(seq, [dtype]) to create from existing sequence
zeros(shape, [dtype]) to create 0 �lled array
ones(shape, [dtype]) to create 1 �lled array
chararray for �xed length strings

findgen()
dindgen()
indgen()
lindgen()
sindgen()

arange(size, [dtype]))
arange(start, end, [dtype])
arange(start, end, step, [dtype])
no equivalent for strings

replicate() repeat (more general)

Array Conversions
byte(arrayvar)
fix(arrayvar)
long(arrayvar)
float(arrayvar)
double(arrayvar)
complex(arrayvar)

arrayvar.astype(<dtype>)

Array Manipulation
reform() reshape() [also arrayvar.flat() and ravel(), or

changing the shape attribute]
sort() argsort() [i.e., indices needed to sort]
arr(sort(arr)) sort(arr) [i.e., sorted array]
max(arrayvar) arrayvar.max()
min(arrayvar) arrayvar.min()
where() where()
arr(where(condition)) arr[where(condition)]
transpose() transpose()
[a,b] (array concatenation) concatenate()

Array shape behavior
shape mismatches result in the smaller
of the two

If shapes do not follow broadcast rules, error generated.
No shape truncation performed ever.
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Numeric types
byte int8

uint8 (unsigned)
int int16
long int32
float float32
double float64
complex complex32

complex64
uint16
uint32
int64
uint64

Math Functions
abs() abs()
acos() arccos()
alog() log()
alog10() log10()
asin() arcsin()
atan() arctan()
atan(y,x) arctan2()
ceil() ceil()
conj() conjugate()
cos() cos()
cosh() cosh()
exp() exp()
floor() floor()
imaginary() complexarr.imag (.real for real component)
invert() Matrix module
ishift() right_shift(), left_shift()
round() round()
sin() sin()
sinh() sinh()
sqrt() sqrt()
tan() tan()
tanh() tanh()

fft() fft (�t module)
convol() convolve() (convolve module)
randomu() random(), uniform() (random module)
randomn() normal() (random module)

Programming
execute() exec()
n_elements(arrayvar) arrayvar.nelements()
n_params() closest equivalent is len(*args). Ability to supply

default values for parameters replaces some uses of
n_params()

size() .shape attribute, .dtype attribute
wait time.sleep (time module)
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Appendix D: matplotlib for IDL Users
Author: Vicki Laidler

This is not a complete discussion of the power of matplotlib (the OO machinery) or pylab (the functional
interface). This document only provides a translation from common IDL plotting functionality, and mentions
a few of the additional capabilities provided by pylab. For a more complete discussion, you will eventually
want to see the tutorial and the documentation for the pylab interface:

http://matplotlib.sourceforge.net/tutorial.html
http://matplotlib.sourceforge.net/matplotlib.pylab.html

Setting up and customizing your Python environment:
Whether you use PyRAF, IPython, or the default python interpreter, there are ways to automatically import
your favorite modules at startup using a con�guration �le. See the documentation for those packages for
details. The examples in this document will explicitly import all packages used.

Setting up and customizing matplotlib:
You will want to modify your .matplotlibrc plot to use the correct backend for plotting, and to set
some default behaviors. (The STScI versions of the default .matplotlibrc have already been modi�ed to
incorporate many of these changes.) If there is a .matplotlibrc �le in your current directory, it will be used
instead of the �le in your home directory. This permits setting up di�erent default environments for di�erent
purposes. You may also want to change the default behavior for image display to avoid interpolating, and
set the image so that pixel (0,0) appears in the lower left of the window.

image.interpolation : nearest # see help(imshow) for options
image.origin : lower # lower | upper

I also wanted to change the default colors and symbols.

lines.marker : None # like !psym=0; plots are line plots
by default

lines.color : k # black
lines.markerfacecolor : k # black
lines.markeredgecolor : k # black
text.color : k # black

Symbols will be solid colored, not hollow, unless you change markerfacecolor to match the color of the
background.

About overplotting behavior:
The default behavior for matplotlib is that every plot is a "smart� overplot, stretching the axes if necessary;
and one must explicitly clear the axes, or clear the �gure, to start a new plot. It's possible to change this
behavior in the setup �le, to get new plots by default

axes.hold : False # whether to clear the axes by
default on

and override it by specifying the "hold" keyword in the plotting call. However I DO NOT recommend this;
it takes a bit of getting used to, but I found it easier to completely change paradigms to "build up the plot
piece by piece" than it is to remember which commands will decorate an existing plot and which won't.
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Some philosophical di�erences:
Matplotlib tends towards atomic commands to control each plot element independently, rather than keywords
on a plot command. This takes getting used to, but adds versatility. Thus, it may take more commands
to accomplish something in matplotlib than it does in IDL, but the advantage is that these commands can
be done in any order, or repeatedly tweaked until it's just right. This is particularly apparent when making
hardcopy plots: the mode of operation is to tweak the plot until it looks the way you want, then press a
button to save it to disk. Since the pylab interface is essentially a set of convenience functions layered on top
of the OO machinery, sometimes by di�erent developers, there is occasionally a little bit of inconsistency in
how things work between di�erent functions. For instance the errorbar function violates the principle in
the previous paragraph: it's not an atomic function that can be added to an existing plot; and the scatter
function is more restrictive in its argument set than the plot function, but o�ers a couple of di�erent keywords
that add power.

Some syntactic di�erences:
You can NOT abbreviate a keyword argument in matplotlib. Some keywords have had some shorthand
versions programmed in as alternates - for instance lw=2 instead of linewidth=2 - but you need to know
the shorthand. Python uses indentation for loop control; leading spaces will cause an error if you are at the
interactive command line. To issue 2 commands on the same line, use a semicolon instead of an ampersand.

The Rosetta Stone:

IDL Matplotlib
Setup (none needed if your paths

are correct)
from numarray import *
from pylab import *
import pyfits
(Or, none needed if you set
up your favorite modules in
the configuration file for
the Python environment you're
using.)

Some data sets: foo = indgen(20)
bar = foo*2

foo = arange(20)
bar = foo*2

Basic plotting: plot, foo plot(foo)
plot, foo, bar plot(foo, bar)
plot, foo, bar,
line=1, thick=2

plot(foo, bar, '�', lw=2)
***or spell out linewidth=2

plot, foo, bar, ticklen=1 plot(foo, bar)
grid()

plot, foo, bar, psym=1 plot(foo, bar, 'x')
OR
scatter(foo, bar)

plot, foo, bar, psym=-1,
symsize=3

plot(foo, bar, '-x', ms=5)
***or spell out markersize=5

plot, foo, bar,
xran=[2,10], yran=[2,10]

plot(foo, bar)
xlim(2,10)
ylim(2,10)

err=indgen(20)/10. err = arange(20)/10.
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plot, foo, bar, psym=2
errplot, foo,
bar-err,bar+err

errorbar(foo, bar, err,
fmt='o')
errorbar(foo, bar, err, 2*err,
'o')
(error bars in x and y)

Overplotting with
default behaviour
changed (Not
recommended or
used in any other
examples

plot, foo, bar
oplot, foo, bar2

plot(foo, bar)
plot(foo, bar2, hold=True)

Text, titles and
legends:

xyouts, 2, 25, 'hello' text(2, 25, 'hello')

plot, foo, bar,
title='Demo', xtitle='foo',
ytitle='bar'

plot(foo, bar)
title('Demo')
xlabel('foo')
ylabel('bar')

plot, foo, bar*2, psym=1
oplot, foo, bar, psym=2

plot(foo, bar*2, 'x',
label='double')
plot(foo, bar, 'o',
label='single')

legend,['twicebar','bar'],
psym=[1,2],/upper,/right

legend(loc='upper right')
***legend will default to
upper right if no location
is specified.
Note the *space* in the
location specification string

plot, foo, bar,
title=systime()

import time
plot(foo, bar)
label(time.asctime())

Window Manipulation erase clf() OR cla()
window, 2 figure(2)
wset, 1 figure(1)
wdelete, 2 close(2)
wshow [no equivalent]

Log plotting plot_oo, foo, bar loglog(foo+1, bar+1)
plot_io, foo, bar semilogy (foo, bar)
plot_oi, foo, bar semilogx (foo, bar)

***Warning: numbers that
are invalid for logarithms
(<=) will not be plotted, but
will silently fail; no warning
message is generated.
***Warning: you can't
alternate between linear plots
containing zero or negative
points, and log plots of valid
data, without clearing the
figure first - it will generate
an exception.
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Postscript output set_plot, 'ps'
device,
file='myplot.ps',/land
plot, foo, bar
device,/close

plot(foo, bar)
savefig('myplot.ps',
orientation='landscape')

Viewing image
data:

im = mrdfits('myfile.fits',
1)

tv, im
loadct, 5
loadct, 0
contour, im
xloadct

f = pyfits.open('myfile.fits')
im = f[1].data
imshow(im)
jet()
gray()
contour(im)
[no equivalent]

Histograms mu=100 & sigma=15 &
x=fltarr(10000)
seed=123132
for i = 0, 9999 do x[i] =
mu + sigma*randomn(seed)
plothist, x

mu, sigma = 10, 15
x = mu + sigma*randn(10000)
n, bins, patches = hist(x, 50)

*** Note that histograms are specified a bit
differently and also look a bit different: bar chart
instead of skyline style

Multiple plots on a
page

!p.multi=[4,2,2]
plot, foo, bar
plot, bar, foo
plot, foo, 20*foo
plot, foo, bar*foo

subplot(221) ; plot(foo, bar)
subplot(222) ; plot(bar, foo)
subplot(223) ; plot(foo,
20*foo)
subplot(224) ; plot(foo,
bar*foo)

Erasing and
redrawing a
subplot:

[no equivalent] subplot(222)
cla()
scatter(bar, foo)

plotting x, y, color
and size:

[no obvious equivalent] scatter(foo, bar, c=foo+bar,
s=10*foo)

Adding a colorbar [no obvious equivalent] colorbar()

Some comparisons:
Some additional functionality:

• modify axes without replotting

• add labels, generate hardcopy, without replotting

• colored lines and points, many more point styles

• smarter legends

• TEX-style math symbols supported

• interactive pan/zoom
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Some functionality that is not yet conveniently wrapped:
(These are items that are available through the OO machinery, but are not yet wrapped into convenient
functions for the interactive user. We welcome feedback on which of these would be most important or
useful!)

• subtitles

• loadct - to dynamically modify or �ick through colortables

• tvrdc,x,y - to read the xy position of the cursor (will soon be available)

• histogram speci�cation by bin interval rather than number of bins

Some still-missing functionality:
(These are items for which the machinery has not yet been developed.)

• surface plots

• save - to save everything in an environment

• journal - to capture commands & responses. (ipython can capture commands.)

Symbols, line styles, and colors:
!psym equivalences:

0 line -

1 plus +

2 asterisk unsupported; overplotting + with x is close

3 dot .

4 diamond d

5 triangle ^

6 square s

7 cross x

10 histogram ls='steps'

!linestyle equivalences:

1 solid -

2 dotted :

3 dashed --

4 dash-dot -.

The following line styles are supported:

- : solid line

-- : dashed line

-. : dash-dot line
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: : dotted line

. : points

, : pixels

o : circle symbols

^ : triangle up symbols

v : triangle down symbols

< : triangle left symbols

> : triangle right symbols

s : square symbols

+ : plus symbols

x : cross symbols

D : diamond symbols

d : thin diamond symbols

1 : tripod down symbols

2 : tripod up symbols

3 : tripod left symbols

4 : tripod right symbols

h : hexagon symbols

H : rotated hexagon symbols

p : pentagon symbols

| : vertical line symbols

_ : horizontal line symbols

steps : use gnuplot style 'steps' # kwarg only

The following color strings are supported

b : blue

g : green

r : red

c : cyan

m : magenta

y : yellow

k : black

w : white

Matplotlib also accepts rgb and colorname speci�cations (eg hex rgb, or "white").
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Approximate color table equivalences:

loadct,0 gray()

loadct,1 almost bone()

loadct,3 almost copper()

loadct,13 almost jet()

Color tables for images:

autumn

bone

cool

copper

�ag

gray

hot

hsv

jet

pink

prism

spring

summer

winter
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Appendix E: Editors and Integrated Development Environments
Editors
Python is easier to use with a good editor. Since indentation is important in Python, use of an editor that
supports block indentation (indenting and undoing indentation for a block of lines) is very handy. Also
important is using an editor that can automatically convert tabs to spaces (the recommended means of
indenting). Fortunately, a great variety of editors handle both these requirements. Many editors provide
many more features that make Python easier to code including syntax highlighting, code folding, auto-
completion, etc. See http://wiki.python.org/moin/PythonEditors for a list of editors that have good support
for Python.

Integrated Development Environments
The use of IDEs with Python is not as widespread as it is for other languages (particularly Java). Some
would explain that by saying that Python doesn't require IDE's as much (or doesn't bene�t as much) as
other languages. It may be the culture, and certainly it is at least partly due to the fact that the user base
is smaller than more widely used languages (thus fewer resources available to devote to IDEs on either the
open source or commercial front). Nevertheless, there are IDE's available for Python, both open source and
commercial. Generally speaking, IDEs provide class browsing features, a debugger, code completion as well
as more advanced editing features. It is questionable whether these sorts of features are worth the e�ort
expended on learning how to use them if your use of Python is not heavy, especially if you are not developing
complex projects.

IDLE is one that is distributed with Python. Pythonwin is one that is also open source, but only runs
under Microsoft windows. In many respects emacs serves as an IDE if you willing to learn how to use it.
BoaConstrictor and Eric3 are the other best known. Wing IDE, BlackAdder, and Komodo are the most well
known commercial IDE's for Python; these generally have many more features than the opensource IDEs.
Wing IDE is signi�cantly cheaper for educational institutions (~$100 per developer per platform). All three
are very inexpensive for students and individual (non-work, non-commercial) use (~$30). Google any of
these names (with Python also in the search box) to get more information.
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Appendix F: numpy vs Numeric vs numarray
In the beginning there was Numeric, which was the �rst array package available for Python. Because of
various shortcomings that made it more awkward to use for larger arrays, STScI developed numarray. Since
each has advantages over the other, there has not been any clear indication that all Numeric users are willing
to move to numarray (primarily because numarray is slower for small arrays than Numeric). This situation
led to a schism in library support where many useful libraries were available for one or the other. Travis
Oliphant decided to merge the two communities by merging the best features of both Numeric and numarray
into a new package called numpy. The work on numpy has matured to the point that there are few reasons
to use either Numeric or numarray, particularly if you are just starting to use Python.

We strongly recommend using numpy; STScI has converted all its software to use numpy. Numeric is no
longer being maintained, and STScI will end all support for numarray by mid-2008.
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Appendix G: Multidimensional Array Indexing Order
What is the right way to index multi-dimensional arrays? Before you jump to conclusions about the one
and true way to index multi-dimensional arrays, it pays to understand why this is a confusing issue. This
appendix will try to explain in detail how numpy indexing works and why we adopt the convention we do
for images, and when it may be appropriate to adopt other conventions.

The �rst thing to understand is that there are two con�icting conventions for indexing 2-dimensional
arrays. Matrix notation uses the �rst index to indicate which row is being selected and the second index to
indicate which column is selected. This is opposite the geometrically oriented-convention for images where
people generally think the �rst index represents x position (i.e., column) and the second represents y position
(i.e., row). This alone is the source of much confusion; matrix-oriented users and image-oriented users expect
two di�erent things with regard to indexing.

The second issue to understand is how indices correspond to the order the array is stored in memory.
In Fortran the �rst index is the most rapidly varying index when moving through the elements of a two
dimensional array as it is stored in memory. If you adopt the matrix convention for indexing, then this
means the matrix is stored one column at a time (since the �rst index moves to the next row as it changes).
Thus Fortran is considered a �Column-major� language. C has just the opposite convention. In C, the last
index changes most rapidly as one moves through the array as stored in memory. Thus C is a �Row-major�
language. The matrix is stored by rows. Note that in both cases it presumes that the matrix convention for
indexing is being used, i.e., for both Fortran and C, the �rst index is the row. Note this convention implies
that the indexing convention is invariant and that the data order changes to keep that so.

But that's not the only way to look at it. Suppose one has large two-dimensional arrays (images or
matrices) stored in data �les. Suppose the data are stored by rows rather than by columns. If we are to
preserve our index convention (whether matrix or image) that means that depending on the language we
use, we may be forced to reorder the data if it is read into memory to preserve our indexing convention.
For example if we read row-ordered data into memory without reordering, it will match the matrix indexing
convention for C, but not for Fortran. Conversely, it will match the image indexing convention for Fortran,
but not for C. For C, if one is using data stored in row order, and one wants to preserve the image index
convention, the data must be reordered when reading into memory.

In the end, which you do for Fortran or C depends on which is more important, not reordering data or
preserving the indexing convention. For large images, reordering data is potentially expensive, and often the
indexing convention is inverted to avoid that.

The situation with numpy makes this issue yet more complicated. The internal machinery of numpy
arrays is �exible enough to accept any ordering of indices. One can simply reorder indices by manipulating
the internal stride information for arrays without reordering the data at all. Numpy will know how to map
the new index order to the data without moving the data.

So if this is true, why not choose the index order that matches what you most expect? In particular, why
not de�ne row ordered images to use the image convention? (This is sometimes referred to as the Fortran
convention vs the C convention, thus the 'C' and 'FORTRAN' order options for array ordering in numpy.)
The drawback of doing this is potential performance penalties. It's common to access the data sequentially,
either implicitly in array operations or explicity by looping over rows of an image. When that is done, then
the data will be accessed in non-optimal order. As the �rst index is incremented, what is actually happening
is that elements spaced far apart in memory are being sequentially accessed, with usually poor memory
access speeds. For example, for a two dimensional image 'im' de�ned so that im[0, 10] represents the
value at x=0, y=10. To be consistent with usual Python behavior then im[0] would represent a column at
x=0. Yet that data would be spread over the whole array since the data are stored in row order. Despite the
�exibility of numpy's indexing, it can't really paper over the fact basic operations are rendered ine�cient
because of data order or that getting contiguous subarrays is still awkward (e.g., im[:,0] for the �rst row,
vs im[0]), thus one can't use an idiom such as for row in im; for col in im does work, but doesn't yield
contiguous column data.

As it turns out, numpy is smart enough when dealing with ufuncs to determine which index is the most
rapidly varying one in memory and uses that for the innermost loop. Thus for ufuncs there is no large
intrinsic advantage to either approach in most cases. On the other hand, use of .flat with an FORTRAN-
ordered array will lead to non-optimal memory access as adjacent elements in the �attened array (iterator,
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actually) are not contiguous in memory.
Indeed, the fact is that Python indexing on lists and other sequences naturally leads to an outside-to-

inside ordering (the �rst index gets the largest grouping, the next the next largest, and the last gets the
smallest element). Since image data are normally stored by rows, this corresponds to position within rows
being the last item indexed.

For astronomy, we've concluded that it is more important to leave the data order unchanged rather than
the indexing order since the data arrays may be so large. When this is rarely the case, then using the Fortran
convention for indexing may make sense. If you do want to use Fortran ordering realize that there are two
approaches to consider: 1) accept that the �rst index is just not the most rapidly changing in memory and
have all your I/O routines reorder your data when going from memory to disk or visa versa, or use numpy's
mechanism for mapping the �rst index to the most rapidly varying data. We recommend the former if
possible. The disadvantage of the latter is that many of numpy's functions will yield arrays without Fortran
ordering unless you are careful to use the 'order' keyword. Doing this would be highly inconvenient.

Otherwise we recommend simply learning to reverse the usual order of indices when accessing elements
of an array. Granted, it goes against the grain, but it is more in line with Python semantics and the natural
order of the data.
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