
The PyFITS Handbook

Hubble Division
3700 San Martin Drive
Baltimore, Maryland 21218
help@stsci.edu

Produced automatically from
http://mediawiki.stsci.edu/mediawiki/index.php/Telescopedia:PyFITS:PrintVersion

on Tuesday, May 04, 2010.

http://mediawiki.stsci.edu/mediawiki/index.php/Telescopedia:PyFITS:PrintVersion

ii �

Contents

1 Introduction 1

1.1 Installation . 1

1.2 User Support . 2

2 Quick Tutorial 3

2.1 Read and Update Existing FITS Files 3

2.1.1 Opening a FITS file . 3

2.1.2 Working With a FITS Header 4

2.1.3 Working With Image Data 6

2.1.4 Working With Table Data 7

2.1.5 Save File Changes . 9

2.2 Create New FITS File . 9

2.2.1 Create New Image File . 9

2.2.2 Create New Table File . 10

2.2.3 Convenience Functions . 12

3 FITS Headers 15

3.1 Header of an HDU . 15

3.2 The Header Attribute . 16

3.2.1 Value Access and Update . 16

3.2.2 COMMENT, HISTORY, and Blank Keywords 17

3.3 Card Images . 17

3.4 Card List . 18

3.5 CONTINUE Cards . 19

iii

iv � CONTENTS

3.6 HIERARCH Cards . 20

4 Image Data 21

4.1 Image Data as an Array . 21

4.2 Scaled Data . 22

4.2.1 Reading Scaled Image Data 22

4.2.2 Writing Scaled Image Data 23

4.3 Data Section . 24

5 Table Data 25

5.1 Table Data as a Record Array . 25

5.1.1 What is a Record Array? . 25

5.1.2 Metadata of a Table . 26

5.1.3 Reading a FITS Table . 26

5.2 Table Operations . 26

5.2.1 Select Records in a Table . 26

5.2.2 Merge Tables . 27

5.2.3 Appending Tables . 27

5.3 Scaled Data in Tables . 28

5.4 Create a FITS Table . 28

5.4.1 Column Creation . 28

6 Verification 31

6.1 FITS Standard . 31

6.2 Verification Options . 32

6.3 Verifications at Different Data Object Levels 33

6.3.1 Verification at HDUList . 33

6.3.2 Verification at Each HDU . 33

6.3.3 Verification at Each Card . 34

6.3.4 Verification using the FITS Checksum Keyword Convention 36

7 Less Familiar Objects 39

CONTENTS � v

7.1 ASCII Tables . 39

7.1.1 Create an ASCII Table . 40

7.2 Variable Length Array Tables . 41

7.2.1 Create Variable Length Array Table 41

7.3 Random Access Group . 42

7.3.1 Header and Summary . 43

7.3.2 Group Parameters . 43

7.3.3 Image Data . 44

7.3.4 Create a Random Access Group HDU 45

7.4 Compressed Image Data . 46

7.4.1 Header and Summary . 46

7.4.2 Data . 48

7.4.3 Create a Compressed Image HDU 48

8 Miscellaneous Features 51

8.1 Warning Messages . 51

9 Reference Manual 53

9.1 Converting a 3-color image (JPG) to separate FITS images 53

10 Index 57

10.1 Index . 57

vi � CONTENTS

List of Tables

vii

viii � LIST OF TABLES

List of Figures

9.1 Starting image . 54

9.2 Red color information . 54

9.3 Green color information . 55

9.4 Blue color information . 55

ix

x � LIST OF FIGURES

Chapter 1

Introduction

1.1 Installation . 1

1.2 User Support . 2

The PyFITS module is a Python library providing access to FITS files. FITS
(Flexible Image Transport System) is a portable file standard widely used in the
astronomy community to store images and tables.

1.1 Installation

PyFITS requires Python version 2.3 or newer. PyFITS also requires the numpy
module. Information about numpy can be found at:

http://numpy.scipy.org/

To download numpy, go to:

http://sourceforge.net/project/numpy

PyFITS’s source code is pure Python. It can be downloaded from:

http://www.stsci.edu/resources/software hardware/pyfits/Download

PyFITS uses python’s distutils for its installation. To install it, unpack the tar file
and type:

1

http://numpy.scipy.org/
http://sourceforge.net/project/numpy
http://www.stsci.edu/resources/software_hardware/pyfits/Download

2 � CHAPTER 1. INTRODUCTION

python setup.py install

This will install pyfits in python’s site-packages directory. If permissions do not
allow this kind of installation PyFITS can be installed in a personal directory using
one of the commands below. Note, that PYTHONPATH has to be set or modified
accordingly. The three examples below show how to install PyFITS in an arbitrary
directory <install-dir> and how to modify PYTHONPATH.

python setup.py install --home=<install-dir>

setenv PYTHONPATH <install-dir>/lib/python

python setup.py install --prefix=<install-lib>

setenv PYTHONPATH <install-dir>lib/python2.3/site-packages

In this Guide, we’ll assume that the reader has basic familiarity with Python. Famil-
iarity with numpy is not required, but it will help to understand the data structures
in PyFITS.

1.2 User Support

The official PyFITS web page is:

http://www.stsci.edu/resources/software hardware/pyfits

If you have any question or comment regarding PyFITS, user support is available
through the STScI Help Desk:

� E-mail: help@stsci.edu

� Phone: (410) 338-1082

http://www.stsci.edu/resources/software_hardware/pyfits

Chapter 2

Quick Tutorial

2.1 Read and Update Existing FITS Files 3

2.2 Create New FITS File . 9

This chapter provides a quick introduction of using PyFITS. The goal is to demon-
strate PyFITS’s basic features without getting into too much detail. If you are a
first time user or an occasional PyFITS user, using only the most basic functionality,
this is where you should start. Otherwise, it is safe to skip this chapter.

After installing numpy and PyFITS, start Python and load the PyFITS library.
Note that the module name is all lower case.

>>> import pyfits

2.1 Read and Update Existing FITS Files

2.1.1 Opening a FITS file

Once the PyFITS module is loaded, we can open an existing FITS file:

>>> hdulist = pyfits.open(’input.fits’)

The open() function has several optional arguments which will be discussed in a
later chapter. The default mode, as in the above example, is “readonly”. The

3

4 � CHAPTER 2. QUICK TUTORIAL

open method returns a PyFITS object called an HDUList which is a Python-like
list, consisting of HDU objects. An HDU (Header Data Unit) is the highest level
component of the FITS file structure. So, after the above open call, hdulist[0] is the
primary HDU, hdulist[1], if any, is the first extension HDU, etc.

The HDUList has a useful method info(), which summarizes the content of the
opened FITS file:

>>> hdulist.info()

Filename: test1.fits

No. Name Type Cards Dimensions Format

0 PRIMARY PrimaryHDU 220 () Int16

1 SCI ImageHDU 61 (800, 800) Float32

2 SCI ImageHDU 61 (800, 800) Float32

3 SCI ImageHDU 61 (800, 800) Float32

4 SCI ImageHDU 61 (800, 800) Float32

After you are done with the opened file, close it with the close() method:

>>> hdulist.close()

The headers will still be accessible after the HDUlist is closed. The data may or
may not be accessible depending on whether the data are touched and if they are
memory-mapped, see later chapters for detail.

2.1.2 Working With a FITS Header

As mentioned earlier, each element of an HDUList is an HDU object with attributes
of header and data, which can be used to access the header keywords and the data.

The header attribute is a Header instance, another PyFITS object. To get the value
of a header keyword, simply do (a la Python dictionaries):

>>> hdulist[0].header[’targname’]

’NGC121’

to get the value of the keyword targname, which is a string ‘NGC121’.

Although keyword names are always in upper case inside the FITS file, specifying
a keyword name with PyFITS is case-insensitive, for user’s convenience. If the
specified keyword name does not exist, it will raise a KeyError exception.

We can also get the keyword value by indexing (a la Python lists):

2.1. READ AND UPDATE EXISTING FITS FILES � 5

>>> hdulist[0].header[27]

96

This example returns the 28th (like Python lists, it is 0-indexed) keyword’s value,
an integer, 96.

Similarly, it is easy to update a keyword’s value in PyFITS, either through keyword
name or index:

>>> prihdr = hdulist[0].header

>>> prihdr[’targname’] = ’NGC121-a’

>>> prihdr[27] = 99

Use the above syntax if the keyword is already present in the header. If the keyword
might not exist and you want to add it if it doesn’t, use the update() method:

>>> prihdr.update(’observer’, ’Edwin Hubble’)

Special methods must be used to add comment or history records:

>>> prihdr.add_history(’I updated this file 2/26/09’)

>>> prihdr.add_comment(’Edwin Hubble really knew his stuff’)

A header consists of Card objects (i.e. the 80-column card-images specified in the
FITS standard). Each Card normally has up to three parts: key, value, and com-
ment. To see the entire list of cardimages of an HDU, use the ascardlist() method:

>>> print prihdr.ascardlist()[:3]

SIMPLE = T / file does conform to FITS standard

BITPIX = 16 / number of bits per data pixel

NAXIS = 0 / number of data axes

Only the first three cards are shown above.

To get a list of all keywords, use the keys() method of the card list:

>>> prihdr.ascardlist().keys()

[’SIMPLE’, ’BITPIX’, ’NAXIS’, ...]

6 � CHAPTER 2. QUICK TUTORIAL

2.1.3 Working With Image Data

If an HDU’s data is an image, the data attribute of the HDU object will return a
numpy ndarray object. Refer to the numpy documentation for details on manipu-
lating these numerical arrays.

>>> scidata = hdulist[1].data

Here, scidata points to the data object in the second HDU (the first HDU, hdulist[0],
being the primary HDU) in hdulist, which corresponds to the ‘SCI’ extension. Al-
ternatively, you can access the extension by its extension name (specified in the
EXTNAME keyword):

>>> scidata = hdulist[’SCI’].data

If there is more than one extension with the same EXTNAME, EXTVER’s value
needs to be specified as the second argument, e.g.:

>>> scidata = hdulist[’sci’,2]

The returned numpy object has many attributes and methods for a user to get
information about the array, e.g.:

>>> scidata.shape

(800, 800)

>>> scidata.dtype.name

’float32’

Since image data is a numpy object, we can slice it, view it, and perform mathe-
matical operations on it. To see the pixel value at x=5, y=2:

>>> print scidata[1,4]

Note that, like C (and unlike FORTRAN), Python is 0-indexed and the indices have
the slowest axis first and fast axis last, i.e. for a 2-D image, the fast axis (X-axis)
which corresponds to the FITS NAXIS1 keyword, is the second index. Similarly,
the sub-section of x=11 to 20 (inclusive) and y=31 to 40 (inclusive) is:

>>> scidata[30:40, 10:20]

2.1. READ AND UPDATE EXISTING FITS FILES � 7

To update the value of a pixel or a sub-section:

>>> scidata[30:40,10:20] = scidata[1,4] = 999

This example changes the values of both the pixel [1,4] and the sub-section [30:40,10:20]
to the new value of 999.

The next example of array manipulation is to convert the image data from counts
to flux:

>>> photflam = hdulist[1].header[’photflam’]

>>> exptime = prihdr[’exptime’]

>>> scidata *= photflam / exptime

This example performs the math on the array in-place, thereby keeping the memory
usage to a minimum.

If at this point you want to preserve all the changes you made and write it to a new
file, you can use the writeto() method of HDUList (see below).

2.1.4 Working With Table Data

If you are familiar with the record array in numpy, you will find the table data is
basically a record array with some extra properties. But familiarity with record
arrays is not a prerequisite for this Guide.

Like images, the data portion of a FITS table extension is in the .data attribute:

>>> hdulist = pyfits.open(’table.fits’)

>>> tbdata = hdulist[1].data # assuming the first extension is a table

To see the first row of the table:

>>> print tbdata[0]

(1, ’abc’, 3.7000002861022949, 0)

Each row in the table is a FITS rec object which looks like a (Python) tuple con-
taining elements of heterogeneous data types. In this example: an integer, a string,
a floating point number, and a Boolean value. So the table data are just an array of
such records. More commonly, a user is likely to access the data in a column-wise
way. This is accomplished by using the field() method. To get the first column (or
field) of the table, use:

8 � CHAPTER 2. QUICK TUTORIAL

>>> tbdata.field(0)

array([1, 2])

A numpy object with the data type of the specified field is returned.

Like header keywords, a field can be referred either by index, as above, or by name:

>>> tbdata.field(’id’)

array([1, 2])

But how do we know what field names we’ve got? First, let’s introduce another
attribute of the table HDU: the .columns attribute:

>>> cols = hdulist[1].columns

This attribute is a ColDefs (column definitions) object. If we use its info() method:

>>> cols.info()

name:

[’c1’, ’c2’, ’c3’, ’c4’]

format:

[’1J’, ’3A’, ’1E’, ’1L’]

unit:

[’’, ’’, ’’, ’’]

null:

[-2147483647, ’’, ’’, ’’]

bscale:

[’’, ’’, 3, ’’]

bzero:

[’’, ’’, 0.40000000000000002, ’’]

disp:

[’I11’, ’A3’, ’G15.7’, ’L6’]

start:

[’’, ’’, ’’, ’’]

dim:

[’’, ’’, ’’, ’’]

it will show all its attributes, such as names, formats, bscales, bzeros, etc. We can
also get these properties individually, e.g.:

>>> cols.names

[’ID’, ’name’, ’mag’, ’flag’]

2.2. CREATE NEW FITS FILE � 9

returns a (Python) list of field names.

Since each field is a numpy object, we’ll have the entire arsenal of numpy tools to
use. We can reassign (update) the values:

>>> tbdata.field(’flag’)[:] = 0

2.1.5 Save File Changes

As mentioned earlier, after a user opened a file, made a few changes to either header
or data, the user can use the writeto() method in HDUList to save the changes. This
takes the version of headers and data in memory and writes them to a new FITS
file on disk. Subsequent operations can be performed to the data in memory and
written out to yet another different file, all without recopying the original data to
(more) memory.

>>> hdulist.writeto(’newimage.fits’)

will write the current content of hdulist to a new disk file newfile.fits. If a file was
opened with the update mode, the flush() method can also be used to write all the
changes made since open(), back to the original file. The close() method will do the
same for a FITS file opened with update mode.

>>> f = pyfits.open(’original.fits’, mode=’update’)

... # making changes in data and/or header

>>> f.flush() # changes are written back to original.fits

2.2 Create New FITS File

2.2.1 Create New Image File

So far we have demonstrated how to read and update an existing FITS file. But
how about creating a new FITS file from scratch? Such task is very easy in PyFITS
for an image HDU. We’ll first demonstrate how to create a FITS file consisting only
the primary HDU with image data.

First, we create a numpy object for the data part:

>>> import numpy as np

>>> n = np.arange(100) # a simple sequence from 0 to 99

10 � CHAPTER 2. QUICK TUTORIAL

Next, we create a PrimaryHDU object to encapsulate the data:

>>> hdu = pyfits.PrimaryHDU(n)

We then create a HDUList to contain the newly created primary HDU, and write
to a new file:

>>> hdulist = pyfits.HDUList([hdu])

>>> hdulist.writeto(’new.fits’)

That’s it! In fact, PyFITS even provides a short cut for the last two lines to
accomplish the same behavior:

>>> hdu.writeto(’new.fits’)

2.2.2 Create New Table File

To create a table HDU is a little more involved than image HDU, because a table’s
structure needs more information. First of all, tables can only be an extension HDU,
not a primary. There are two kinds of FITS table extensions: ASCII and binary.
We’ll use binary table examples here.

To create a table from scratch, we need to define columns first, by constructing the
Column objects and their data. Suppose we have two columns, the first containing
strings, and the second containing floating point numbers:

>>> import pyfits

>>> import numpy as np

>>> a1 = np.array([’NGC1001’, ’NGC1002’, ’NGC1003’])

>>> a2 = np.array([11.1, 12.3, 15.2])

>>> col1 = pyfits.Column(name=’target’, format=’20A’, array=a1)

>>> col2 = pyfits.Column(name=’V_mag’, format=’E’, array=a2)

Next, create a ColDefs (column-definitions) object for all columns:

>>> cols=pyfits.ColDefs([col1, col2])

Now, create a new binary table HDU object by using the PyFITS function new table():

2.2. CREATE NEW FITS FILE � 11

>>> tbhdu=pyfits.new_table(cols)

This function returns (in this case) a BinTableHDU.

Of course, you can do this more concisely:

>>> tbhdu=pyfits.new_table(pyfits.ColDefs([pyfits.Column(name=’target’,

format=’20A’,

array=a1),

pyfits.Column(name=’V_mag’,

format=’E’,

array=a2)]

))

As before, we create a PrimaryHDU object to encapsulate the data:

>>> hdu = pyfits.PrimaryHDU(n)

We then create a HDUList containing both the primary HDU and the newly created
table extension, and write to a new file:

>>> thdulist = pyfits.HDUList([hdu, tbhdu])

>>> thdulist.writeto(’table.fits’)

If this will be the only extension of the new FITS file and you only have a minimal
primary HDU with no data, PyFITS again provides a short cut:

>>> tbhdu.writeto(’table.fits’)

Alternatively, you can append it to the hdulist we have already created from the
image file section:

>>> hdulist.append(tbhdu)

So far, we have covered the most basic features of PyFITS. In the following chapters
we’ll show more advanced examples and explain options in each class and method.

12 � CHAPTER 2. QUICK TUTORIAL

2.2.3 Convenience Functions

PyFITS also provides several high level (“convenience”) functions. Such a conve-
nience function is a “canned” operation to achieve one simple task. By using these
“convenience” functions, a user does not have to worry about opening or closing a
file, all the housekeeping is done implicitly.

The first of these functions is getheader(), to get the header of an HDU. Here are
several examples of getting the header. Only the file name is required for this
function. The rest of the arguments are optional and flexible to specify which HDU
the user wants to get:

>>> from pyfits import getheader

>>> getheader(’in.fits’) # get default HDU (=0), i.e. primary HDU’s header

>>> getheader(’in.fits’, 0) # get primary HDU’s header

>>> getheader(’in.fits’, 2) # the second extension

the HDU with EXTNAME=’sci’ (if there is only 1)

>>> getheader(’in.fits’, ’sci’)

the HDU with EXTNAME=’sci’ and EXTVER=2

>>> getheader(’in.fits’, ’sci’, 2)

>>> getheader(’in.fits’, (’sci’, 2)) # use a tuple to do the same

>>> getheader(’in.fits’, ext=2) # the second extension

the ’sci’ extension, if there is only 1

>>> getheader(’in.fits’, extname=’sci’)

the HDU with EXTNAME=’sci’ and EXTVER=2

>>> getheader(’in.fits’, extname=’sci’, extver=2)

ambiguous specifications will raise an exception, DON"T DO IT!!

>>> getheader(’in.fits’, ext=(’sci’,1), extname=’err’, extver=2)

After you get the header, you can access the information in it, such as getting and
modifying a keyword value:

>>> from pyfits import getheader

>>> hdr = getheader(’in.fits’, 1) # get first extension’s header

>>> filter = hdr[’filter’] # get the value of the keyword "filter"

>>> val = hdr[10] # get the 11th keyword’s value

>>> hdr[’filter’]=’FW555’ # change the keyword value

For the header keywords, the header is like a dictionary, as well as a list. The user
can access the keywords either by name or by numeric index, as explained earlier
in this chapter.

If a user only needs to read one keyword, the getval() function can further simplify
to just one call, instead of two as shown in the above examples:

2.2. CREATE NEW FITS FILE � 13

>>> from pyfits import getval

>>> flt = getval(’in.fits’, ’filter’, 1) # get 1st extension’s keyword

FILTER’s value

>>> val = getval(’in.fits’, 10, ’sci’, 2) # get the 2nd sci extension’s

11th keyword’s value

The function getdata() gets the data of an HDU. Similar to getheader(), it only
requires the input FITS file name while the extension is specified through the op-
tional arguments. It does have one extra optional arguemnt header. If header is
set to True, this function will return both data and header, otherwise only data is
returned.

>>> from pyfits import getdata

>>> dat = getdata(’in.fits’, ’sci’, 3) # get 3rd sci extension’s data

get 1st extension’s data and header

>>> data, hdr = getdata(’in.fits’, 1, header=True)

The functions introduced above are for reading. The next few functions demonstrate
convenience functions for writing:

>>> pyfits.writeto(’out.fits’, data, header)

The writeto() function uses the provided data and an optional header to write to
an output FITS file.

>>> pyfits.append(’out.fits’, data, header)

The append() function will use the provided data and the optional header to append
to an existing FITS file. If the specified output file does not exist, it will create one.

>>> from pyfits import update

>>> update(file, dat, hdr, ’sci’) # update the ’sci’ extension

>>> update(file, dat, 3) # update the 3rd extension

>>> update(file, dat, hdr, 3) # update the 3rd extension

>>> update(file, dat, ’sci’, 2) # update the 2nd SCI extension

>>> update(file, dat, 3, header=hdr) # update the 3rd extension

>>> update(file, dat, header=hdr, ext=5) # update the 5th extension

14 � CHAPTER 2. QUICK TUTORIAL

The update() function will update the specified extension with the input data/header.
The 3rd argument can be the header associated with the data. If the 3rd argument
is not a header, it (and other positional arguments) are assumed to be the extension
specification(s). Header and extension specs can also be keyword arguments.

Finally, the info() function will print out information of the specified FITS file:

>>> pyfits.info(’test0.fits’)

Filename: test0.fits

No. Name Type Cards Dimensions Format

0 PRIMARY PrimaryHDU 138 () Int16

1 SCI ImageHDU 61 (400, 400) Int16

2 SCI ImageHDU 61 (400, 400) Int16

3 SCI ImageHDU 61 (400, 400) Int16

4 SCI ImageHDU 61 (400, 400) Int16

Chapter 3

FITS Headers

3.1 Header of an HDU . 15

3.2 The Header Attribute . 16

3.3 Card Images . 17

3.4 Card List . 18

3.5 CONTINUE Cards . 19

3.6 HIERARCH Cards . 20

In the next three chapters, more detailed information as well as examples will be
explained for manipulating the header, the image data, and the table data respec-
tively.

3.1 Header of an HDU

Every HDU normally has two components: header and data. In PyFITS these two
components are accessed through the two attributes of the HDU, .header and .data.

While an HDU may have empty data, i.e. the .data attribute is None, any HDU
will always have a header. When an HDU is created with a constructor, eg.
hdu=PrimaryHDU(data, header), the user may supply the header value from an
existing HDU’s header and the data value from a numpy array. If the defaults
(None) are used, the new HDU will have the minimal require keyword:

>>> hdu = pyfits.PrimaryHDU()

>>> print hdu.header.ascardlist() # show the keywords

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

15

16 � CHAPTER 3. FITS HEADERS

A user can use any header and any data to construct a new HDU. PyFITS will strip
the required keywords from the input header first and then add back the required
keywords compatible to the new HDU. So, a user can use a table HDU’s header to
construct an image HDU and vice versa. The constructor will also ensure the data
type and dimension information in the header agree with the data.

3.2 The Header Attribute

3.2.1 Value Access and Update

As shown in the Quick Tutorial, keyword values can be accessed via keyword name
or index of an HDU’s header attribute. Here is a quick summary:

>>> hdulist = pyfits.open(’input.fits’) # open a FITS file

>>> prihdr = hdulist[0].header # the primary HDU header

>>> print prihdr[3] # get the 4th keyword’s value

10

>>> prihdr[3] = 20 # change it’s value

>>> print prihdr[’darkcorr’] # get the value of the keyword ’darkcorr’

’OMIT’

>>> prihdr[’darkcorr’]= ’PERFORM’ # change darkcorr’s value

When reference by the keyword name, it is case insensitive. Thus, prihdr[‘abc’],
prihdr[‘ABC’], or prihdr[‘aBc’] are all equivalent.

A keyword (and its corresponding Card) can be deleted using the same index/name
syntax:

>>> del prihdr[3] # delete the 2nd keyword

>>> del prihdr[’abc’] # get the value of the keyword ’abc’

Note that, like a regular Python list, the indexing updates after each delete, so if
del prihdr[3] is done two times in a row, the 2nd and 3rd keywords are removed
from the original header.

Slices are not accepted by the header attribute, so it is not possible to do del
prihdr[3:5], for example.

The method update(key, value, comment) is a more versatile way to update key-
words. It has the flexibility to update an existing keyword and in case the keyword
does not exist, add it to the header. It also allows the use to update both the value
and its comment. If it is a new keyword, the user can also specify where to put it,
using the before or after optional argument. The default is to append at the end of
the header.

>>> prihdr.update(’target’, ’NGC1234’, ’target name’)

>>> # place the next new keyword before the ’target’ keyword

>>> prihdr.update(’newkey’, 666, before=’target’) # comment is optional

>>> # place the next new keyword after the 21st keyword

>>> prihdr.update(’newkey2’, 42.0, ’another new key’, after=20)

3.3. CARD IMAGES � 17

3.2.2 COMMENT, HISTORY, and Blank Keywords

Most keywords in a FITS header have unique names. If there are more than two
cards sharing the same name, it is the first one accessed when referred by name.
The duplicates can only be accessed by numeric indexing.

There are three special keywords (their associated cards are sometimes referred to
as commentary cards), which commonly appear in FITS headers more than once.
They are (1) blank keyword, (2) HISTORY, and (3) COMMENT. Again, to get
their values (except for the first one), a user must use indexing.

The following header methods are provided in PyFITS to add new commentary
cards: add history(), add comment(), and add blank(). They are provided because
the update() method will not work - it will replace the first card of the same keyword.

Users can control where in the header to add the new commentary card(s) by using
the optional before and after arguments, similar to the update() method used for
regular cards. If no before or after is specified, the new card will be placed after
the last one of the same kind (except blank-key cards which will always be placed
at the end). If no card of the same kind exists, it will be placed at the end. Here is
an example:

>>> hdu.header.add_history(’history 1’)

>>> hdu.header.add_blank(’blank 1’)

>>> hdu.header.add_comment(’comment 1’)

>>> hdu.header.add_history(’history 2’)

>>> hdu.header.add_blank(’blank 2’)

>>> hdu.header.add_comment(’comment 2’))

and the part in the modified header becomes:

HISTORY history 1

HISTORY history 2

blank 1

COMMENT comment 1

COMMENT comment 2

blank 2

Ironically, there is no comment in a commentary card , only a string value.

3.3 Card Images

A FITS header consists of card images.

A card images in a FITS header consists of a keyword name, a value, and optionally
a comment. Physically, it takes 80 columns (bytes) - without carriage return - in
a FITS file’s storage form. In PyFITS, each card image is manifested by a Card
object. There are also special kinds of cards: commentary cards (see above) and card

18 � CHAPTER 3. FITS HEADERS

images taking more than one 80-column card image. The latter will be discussed
later.

Most of the time, a new Card object is created with the Card constructor: Card(key,
value, comment). For example:

>>> c1 = pyfits.Card(’temp’, 80.0, ’temperature, floating value’)

>>> c2 = pyfits.Card(’detector’, 1) # comment is optional

>>> c3 = pyfits.Card(’mir_revr’, True, ’mirror reversed? Boolean value)

>>> c4 = pyfits.Card(’abc’, 2+3j, ’complex value’)

>>> c5 = pyfits.Card(’observer’, ’Hubble’, ’string value’)

>>> print c1; print c2; print c3; print c4; print c5 # show the card images

TEMP = 80.0 / temperature, floating value

DETECTOR= 1 /

MIR_REVR= T / mirror reversed? Boolean value

ABC = (2.0, 3.0) / complex value

OBSERVER= ’Hubble ’ / string value

Cards have the attributes .key, .value, and .comment. Both .value and .commet can
be changed but not the .key attribute.

The Card() constructor will check if the arguments given are conforming to the
FITS starndard and has a fixed card image format. If the user wants to create a
card with a customized format or even a card which is not conforming to the FITS
standard (eg. for testing purposes), the card method fromstring() can be used.

Cards can be verified by the verify() method. The non-standard card c2 in the
example below, is flagged by such verification. More about verification in PyFITS
will be discussed in a later chapter.

>>> c1 = pyfits.Card().fromstring(’ABC = 3.456D023’)

>>> c2 = pyfits.Card().fromstring("P.I. =’Hubble’")

>>> print c1; print c2

ABC = 3.456D023

P.I. =’Hubble’

>>> c2.verify()

Output verification result:

Unfixable error: Illegal keyword name ’P.I.’

3.4 Card List

The Header itself only has limited functionality. Many lower level operations can
only be achieved by going through its CardList object.

The header is basically a list of Cards. This list can be manifested as a CardList
object in PyFITS. It is accessed via the ascardlist() method (or the .ascard attribute,
for short) of Header. Since the header attribute only refers to a card value, so when
a user needs to access a card’s other properties (eg. the comment) in a header, it
has to go through the CardList.

3.5. CONTINUE CARDS � 19

Like the header’s item, the CardList’s item can be accessed through either the
keyword name or index.

>>> cards = prihdr.header.ascardlist()

>>> cards[’abc’].comment=’new comment’ # update the keyword ABC’s comment

>>> cards[3].key # see the keyword name of the 4th card

>>> cards[10:20].keys() # see keyword names from cards 11 to 20

3.5 CONTINUE Cards

The fact that the FITS standard only allows up to 8 characters for the keyword name
and 80 characters to contain the keyword, the value, and the comment is restrictive
for certain applications. To allow long string values for keywords, a proposal was
made in:

http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/ofwg recomm/r13.html

by using the CONTINUE keyword after the regular 80-column containing the key-
word. PyFITS does support this convention, even though it is not a FITS standard.
The examples below show the use of CONTINUE is automatic for long string values.

>>> c=pyfits.Card(’abc’,’abcdefg’*20)

>>> print c

ABC = ’abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd&’

CONTINUE ’efgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga&’

CONTINUE ’bcdefg&’

>>> c.value

’abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgab

cdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg’

both value and comments are long

>>> c=pyfits.Card(’abc’,’abcdefg’*10,’abcdefg’*10)

>>> print c

ABC = ’abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd&’

CONTINUE ’efg&’

CONTINUE ’&’ / abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

CONTINUE ’&’ / bcdefg

Note that when CONTINUE card is used, at the end of each 80-characters card
image, an ampersand is present. The ampersand is not part of the string value. Also,
there is no “=” at the 9th column after CONTINUE. In the first example, the entire
240 characters is considered a Card. So, if it is the nth card in a header, the (n+1)th
card refers to the next keyword, not the 80-characters containing CONTINUE.
These keywords having long string values can be accessed and updated just like
regular keywords.

http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/ofwg_recomm/r13.html

20 � CHAPTER 3. FITS HEADERS

3.6 HIERARCH Cards

For keywords longer than 8 characters, there is a convention originated at ESO
to facilitate such use. It uses a special keyword HIERARCH with the actual long
keyword following. PyFITS supports this convention as well.

When creating or updating using the header.update() method, it is necessary to
prepend ‘hierarch’ (case insensitive). But if the keyword is already in the header,
it can be accessed or updated by assignment by using the keyword name diretly,
with or without the ‘hierarch’ prepending. The keyword name will preserve its cases
from its constructor, but when refer to the keyword, it is case insensitive.

Examples follow:

>>> c = pyfits.Card(’abcdefghi’,10)

...

ValueError: keyword name abcdefghi is too long (> 8), use HIERARCH.

>>> c=pyfits.Card(’hierarch abcdefghi’,10)

>>> print c

HIERARCH abcdefghi = 10

>>> h=pyfits.PrimaryHDU()

>>> h.header.update(’hierarch abcdefghi’, 99)

>>> h.header.update(’hierarch abcdefghi’, 99)

>>> h.header[’abcdefghi’]

99

>>> h.header[’abcdefghi’]=10

>>> h.header[’hierarch abcdefghi’]

10

case insensitive

--> h.header.update(’hierarch ABCdefghi’, 1000)

--> print h.header

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

HIERARCH ABCdefghi = 1000

--> h.header[’hierarch abcdefghi’]

1000

Chapter 4

Image Data

4.1 Image Data as an Array 21

4.2 Scaled Data . 22

4.3 Data Section . 24

In this chapter, we’ll discuss the data component in an image HDU.

4.1 Image Data as an Array

A FITS primary HDU or an image extension HDU may contain image data. The
following discussions apply to both of these HDU classes. In PyFITS, for most
cases, it is just a simple numpy array, having the shape specified by the NAXIS
keywords and the data type specified by the BITPIX keyword - unless the data is
scaled, see next section. Here is a quick cross reference between allowed BITPIX
values in FITS images and the numpy data types:

BITPIX Numpy Data Type

8 numpy.uint8 (note it is UNsigned integer)

16 numpy.int16

32 numpy.int32

-32 numpy.float32

-64 numpy.float64

To recap the fact that in numpy the arrays are 0-indexed and the axes are ordered
from slow to fast. So, if a FITS image has NAXIS1=300 and NAXIS2=400, the
numpy array of its data will have the shape of (400, 300).

Here is a summary of reading and updating image data values:

21

22 � CHAPTER 4. IMAGE DATA

>>> f = pyfits.open(’image.fits’) # open a FITS file

>>> scidata = f[1].data # assume the first extension is an image

>>> print scidata[1,4] # get the pixel value at x=5, y=2

>>> scidata[30:40, 10:20] # get values of the subsection

from x=11 to 20, y=31 to 40 (inclusive)

>>> scidata[1,4] = 999 # update a pixel value

>>> scidata[30:40, 10:20] = 0 # update values of a subsection

>>> scidata[3] = scidata[2] # copy the 3rd row to the 4th row

Here are some more complicated examples by using the concept of the “mask array”.
The first example is to change all negative pixel values in scidata to zero. The second
one is to take logarithm of the pixel values which are positive:

>>> scidata[scidata<0] = 0

>>> scidata[scidata>0] = numpy.log(scidata[scidata>0])

These examples show the concise nature of numpy array operations.

4.2 Scaled Data

Sometimes an image is scaled, i.e. the data stored in the file is not the image’s
physical (true) values, but linearly transformed according to the equation:

physical value = BSCALE*(storage value) + BZERO

BSCALE and BZERO are stored as keywords of the same names in the header of
the same HDU. The most common use of scaled image is to store unsigned 16-bit
integer data because FITS standard does not allow it. In this case, the stored data
is signed 16-bit integer (BITPIX=16) with BZERO=32768 (2**15), BSCALE=1.

4.2.1 Reading Scaled Image Data

Images are scaled only when either of the BSCALE/BZERO keywords are present
in the header and either of their values is not the default value (BSCALE=1,
BZERO=0).

For unscaled data, the data attribute of an HDU in PyFITS is a numpy array of the
same data type as specified by the BITPIX keyword. For scaled image, the .data
attribute will be the physical data, i.e. already transformed from the storage data
and may not be the same data type as prescribed in BITPIX. This means an extra
step of copying is needed and thus the corresponding memory requirement. This
also means that the advantage of memory mapping is reduced for scaled data.

For floating point storage data, the scaled data will have the same data type. For
integer data type, the scaled data will always be single precision floating point
(numpy.float32). Here is an example of what happens to such a file, before and
after the data is touched

4.2. SCALED DATA � 23

>>> f=pyfits.open(’scaled_uint16.fits’)

>>> hdu = f[1]

>>> print hdu.header[’bitpix’], hdu.header[’bzero’]

16 32768

>>> print hdu.data # once data is touched, it is scaled

[11. 12. 13. 14. 15.]

>>> hdu.data.dtype.name

’float32’

>>> print hdu.header[’bitpix’] # BITPIX is also updated

-32

BZERO and BSCALE are removed after the scaling

>>> print hdu.header[’bzero’]

KeyError: "Keyword ’bzero’ not found."

4.2.2 Writing Scaled Image Data

With the extra processing and memory requirement, we discourage users to use
scaled data as much as possible. However, PyFITS does provide ways to write
scaled data with the scale(type, option, bscale, bzero) method. Here are a few
examples:

scale the data to Int16 with user specified bscale/bzero

>>> hdu.scale(’int16’, ’’, bzero=32768)

scale the data to Int32 with the min/max of the data range

>>> hdu.scale(’int32’, ’minmax’)

scale the data, using the original BSCALE/BZERO

>>> hdu.scale(’int32’, ’old’)

The first example above shows how to store an unsigned short integer array.

Great caution must be exercised when using the scale() method. The .data attribute
of an image HDU, after the scale() call, will become the storage values, not the
physical values. So, only call scale() just before writing out to FITS files, i.e. calls
of writeto(), flush(), or close(). No further use of the data should be exercised. Here
is an example of what happens to the .data attribute after the scale() call:

>>> hdu=pyfits.PrimaryHDU(numpy.array([0.,1,2,3]))

>>> print hdu.data

[0. 1. 2. 3.]

>>> hdu.scale(’int16’, ’’, bzero=32768)

>>> print hdu.data # now the data has storage values

[-32768 -32767 -32766 -32765]

>>> hdu.writeto(’new.fits’)

24 � CHAPTER 4. IMAGE DATA

4.3 Data Section

When a FITS image HDU’s .data is accessed, either the whole data is copied into
memory (in cases of NOT using memory mapping or if the data is scaled) or a
virtual memory space equivalent to the data size is allocated (in the case of memory
mapping of non-scaled data). If there are several very large image HDU’s being
accessed at the same time, the system may run out of memory.

If a user does not need the entire image(s) at the same time, e.g. processing im-
ages(s) ten rows at a time, the section() method can be used to alleviate such
memory problem.

Here is an example of getting the median image from 3 input images of the size
5000x5000:

>>> f1=pyfits.open(’file1.fits’)

>>> f2=pyfits.open(’file2.fits’)

>>> f3=pyfits.open(’file3.fits’)

>>> output = numpy.zeros(5000*5000)

>>> for i in range(50):

... j=i*100

... k=j+100

... x1=f[1].section[j:k,:]

... x2=f[2].section[j:k,:]

... x3=f[3].section[j:k,:]

... # use scipy.stsci.image’s median function

... output[j:k] = image.median([x1,x2,x3])

Data in each .section must be contiguous. Therefore, if f[1].data is a 400x400 image,
the first part of the following specifications will not work, while the second part will:

>>> # These will NOT work, since the data are not contiguous!

>>> f[1].section[:5,:5]

>>> f[1].section[:,:3]

>>> f[1].section[:,2]

>>> # but these will work:

>>> f[1].section[5,:]

>>> f[1].section[5,:10]

>>> f[1].section[6,7]

At present, the section() method does not support scaled data.

Chapter 5

Table Data

5.1 Table Data as a Record Array 25

5.2 Table Operations . 26

5.3 Scaled Data in Tables . 28

5.4 Create a FITS Table . 28

In this chapter, we’ll discuss the data component in a table HDU. A table will
always be in an extension HDU, never in a primary HDU.

There are two kinds of table in FITS standard: binary table and ASCII table.
Binary table is more economical in storage and faster in data access and manipula-
tion. ASCII table stores the data in a “human readable” form and therefore takes
up more storage space as well as more processing time since the ASCII text need
to be parsed back into numerical values.

5.1 Table Data as a Record Array

5.1.1 What is a Record Array?

A record array is an array which contains records (i.e. rows) of heterogeneous data
types. Record array is available through the records module in the numpy library.
Here is a simple example of record array:

>>> bright = rec.array([(1,’Sirius’, -1.45, ’A1V’),\

....: (2,’Canopus’, -0.73, ’F0Ib’),\

....: (3,’Rigil Kent’, -0.1, ’G2V’)],\

....: formats=’int16,a20,float32,a10’,\

....: names=’order,name,mag,Sp’)

25

26 � CHAPTER 5. TABLE DATA

In this example, there are 3 records (rows) and 4 fields (columns). The first field
is a short integer, second a character string (of length 20), third a floating point
number, and fourth a character string (of length 10). Each record has the same
(heterogeneous) data structure.

5.1.2 Metadata of a Table

The data in a FITS table HDU is basically a record array, with added attributes.
The metadata, i.e. information about the table data, are stored in the header. For
example, the keyword TFORM1 contains the format of the first field, TTYPE2
the name of the second field, etc. NAXIS2 gives the number of records(rows) and
TFIELDS gives the number of fields (columns). For FITS tables, the maximum
number of fields is 999. The data type specified in TFORM is represented by letter
code for binary tables and a FORTRAN-like format string for ASCII tables. Note
that this is different from the format specifications when constructing a record array.

5.1.3 Reading a FITS Table

Like images, the .data attribute of a table HDU contains the data of the table. To
recap the simple example in the Quick Tutorial:

>>> f = pyfits.open(’bright_stars.fits’) # open a FITS file

>>> tbdata = f[1].data # assume the first extension is a table

>>> print tbdata[:2] # show the first two rows

[(1, ’Sirius’, -1.4500000476837158, ’A1V’),

(2, ’Canopus’, -0.73000001907348633, ’F0Ib’)]

--> print tbdata.field(’mag’) # show the values in field "mag"

[-1.45000005 -0.73000002 -0.1]

--> print tbdata.field(1) # field can be referred by index too

[’Sirius’ ’Canopus’ ’Rigil Kent’]

>>> scidata[1,4] = 999 # update a pixel value

>>> scidata[30:40, 10:20] = 0 # update values of a subsection

>>> scidata[3] = scidata[2] # copy the 3rd row to the 4th row

Note that in PyFITS, when using the field() method, it is 0-indexed while the
suffixes in header keywords, such as TFORM is 1-indexed. So, tbdata.field(0) is the
data in the column with the name specified in TTYPE1 and format in TFORM1.

5.2 Table Operations

5.2.1 Select Records in a Table

Like image data, we can use the same “mask array” idea to pick out desired records
from a table and make a new table out of it.

5.2. TABLE OPERATIONS � 27

In the next example, assuming the table’s second field having the name ‘magnitude’,
an output table containing all the records of magnitude > 5 from the input table is
generated:

>>> import pyfits

>>> t = pyfits.open(’table.fits’)

>>> tbdata = t[1].data

>>> mask = tbdata.field(’magnitude’) > 5

>>> newtbdata = tbdata[mask]

>>> hdu = pyfits.BinTableHDU(newtbdata)

>>> hdu.writeto(’newtable.fits’)

5.2.2 Merge Tables

Merging different tables is straightforward in PyFITS,. Simply merge the column
definitions of the input tables.

>>> t1 = pyfits.open(’table1.fits’)

>>> t2 = pyfits.open(’table2.fits’)

the column attribute is the column definitions

>>> t = t1[1].columns + t2[1].columns

>>> hdu = pyfits.new_table(t)

>>> hdu.writeto(’newtable.fits’)

The number of fields in the output table will be the sum of numbers of fields of the
input tables. Users have to make sure the input tables don’t share any common
field names. The number of records in the output table will be the largest number
of records of all input tables. The expanded slots for the originally shorter table(s)
will be zero (or blank) filled.

5.2.3 Appending Tables

Appending one table after another is slightly trickier, since the two tables may have
different field attributes. Here are two examples. The first is to append by field
indices, the second one is to append by field names. In both cases, the output table
will inherit column attributes (name, format, etc.) of the first table.

>>> t1 = pyfits.open(’table1.fits’)

>>> t2 = pyfits.open(’table2.fits’)

one way to find the number of records

>>> nrows1 = t1[1].data.shape[0]

another way to find the number of records

>>> nrows2 = t2[1].header[’naxis2’]

total number of rows in the table to be generated

>>> nrows = nrows1 + nrows2

>>> hdu = pyfits.new_table(t1[1].columns, nrows=nrows)

28 � CHAPTER 5. TABLE DATA

first case, append by the order of fields

>>> for i in range(len(t1[1].columns)):

... hdu.data.field(i)[nrows1:]=t2[1].data.field(i)

or, second case, append by the field names

>>> for name in t1[1].columns.names:

... hdu.data.field(name)[nrows1:]=t2[1].data.field(name)

write the new table to a FITS file

>>> hdu.writeto(’newtable.fits’)

5.3 Scaled Data in Tables

Table field’s data, like an image, can also be scaled. The scaling in table has a more
generalized meaning than in images. In images, the physical data is a simple linear
transformation from the storage data. The table fields do have such construct too,
where BSCALE and BZERO are stored in the header as TSCALn and TZEROn.
In addition, Boolean columns and ASCII tables’s numeric fields are also generalized
“scaled” fields, but without TSCAL and TZERO.

All scaled fields, like the image case, will take extra memory space as well as pro-
cessing. So, if high performance is desired, try to minimize the use of scaled fields.

All the scalings are done for the user, so the user only sees the physical data. Thus,
this no need to worry about scaling back and forth between the physical and storage
column values.

5.4 Create a FITS Table

5.4.1 Column Creation

To create a table from scratch, it is necessary to create individual columns first.
A Column constructor needs the minimal information of column name and format.
Here is a summary of all allowed formats for a binary table:

FITS format code Description 8-bit bytes

L logical (Boolean) 1

X bit *

B Unsigned byte 1

I 16-bit integer 2

J 32-bit integer 4

K 64-bit integer 4

A character 1

E single precision floating point 4

5.4. CREATE A FITS TABLE � 29

D double precision floating point 8

C single precision complex 8

M double precision complex 16

P array descriptor 8

We’ll concentrate on binary tables in this chapter. ASCII tables will be discussed in
a later chapter. The less frequently used X format (bit array) and P format (used
in variable length tables) will also be discussed in a later chapter.

Besides the required name and format arguments in constructing a Column, there
are many optional arguments which can be used in creating a column. Here is a list
of these arguments and their corresponding header keywords and descriptions:

argument Corresponding Description’’’

in Column() header keyword

name TTYPE column name

format TFORM column format

unit TUNIT unit

null TNULL null value (only for B, I, and J)

bscale TSCAL scaling factor for data

bzero TZERO zero point for data scaling

disp TDISP display format

dim TDIM multi-dimensional array spec

start TBCOL starting position for ASCII table

array the data of the column

Note: the current version of PyFITS does not support dim yet.

Here are a few Columns using various combination of these arguments:

>>> import numpy as np

>>> from pyfits import Column

>>> counts = np.array([312, 334, 308, 317])

>>> names=np.array([’NGC1’, ’NGC2’, ’NGC3’, ’NGC4’])

>>> c1 = Column(name=’target’, format=’10A’, array=names)

>>> c2 = Column(name=’counts’, format=’J’, unit=’DN’, array=counts)

>>> c3 = Column(name=’notes’, format=’A10’)

>>> c4 = Column(name=’spectrum’, format=’1000E’)

>>> c5 = Column(name=’flag’, format=’L’,array=[1,0,1,1])

In this example, formats are specified with the FITS letter codes. When there is a
number (>1) preceding a (numeric type) letter code, it means each cell in that field
is a one-dimensional array. In the case of column c4, each cell is an array (a numpy
array) of 1000 elements.

For character string fields, the number can be either before or after the letter ‘A’
and they will mean the same string size. So, for columns c1 and c3, they both have
10 characters in each of their cells. For numeric data type, the dimension number
must be before the letter code, not after.

30 � CHAPTER 5. TABLE DATA

After the columns are constructed, the new table function can be used to construct
a table HDU. We can either go through the column definition object:

>>> coldefs = pyfits.ColDefs([c1,c2,c3,c4,c5])

>>> tbhdu = pyfits.new_table(coldefs)

or directly use the new table function:

>>> tbhdu = pyfits.new_table([c1,c2,c3,c4,c5])

A look of the newly created HDU’s header will show that relevant keywords are
properly populated:

--> print tbhdu.header.ascardlist()

XTENSION = ’BINTABLE’ / binary table extension

BITPIX = 8 / array data type

NAXIS = 2 / number of array dimensions

NAXIS1 = 4025 / length of dimension 1

NAXIS2 = 4 / length of dimension 2

PCOUNT = 0 / number of group parameters

GCOUNT = 1 / number of groups

TFIELDS = 5 / number of table fields

TTYPE1 = ’target ’

TFORM1 = ’10A ’

TTYPE2 = ’counts ’

TFORM2 = ’J ’

TUNIT2 = ’DN ’

TTYPE3 = ’notes ’

TFORM3 = ’10A ’

TTYPE4 = ’spectrum’

TFORM4 = ’1000E ’

TTYPE5 = ’flag ’

TFORM5 = ’L ’

Chapter 6

Verification

6.1 FITS Standard . 31

6.2 Verification Options . 32

6.3 Verifications at Different Data Object Levels 33

PyFITS has built in a flexible scheme to verify FITS data being conforming to the
FITS standard. The basic verification philosophy in PyFITS is to be tolerant in
input and strict in output.

When PyFITS reads a FITS file which is not conforming to FITS standard, it will
not raise an error and exit. It will try to make the best educated interpretation and
only gives up when the offending data is accessed and no unambiguous interpretation
can be reached.

On the other hand, when writing to an output FITS file, the content to be written
must be strictly compliant to the FITS standard by default. This default behavior
can be overwritten by several other options, so the user will not be hold up because
of a minor standard violation.

6.1 FITS Standard

Since FITS standard is a “loose” standard, there are many places the violation can
occur and to enforce them all will be almost impossible. It is not uncommon for
major observatories to generate data products which are not 100% FITS compliant.
Some observatories also developed their own sub-standard (dialect?) and some of
these become so prevalent and they become de facto standard. One such example
is the the long string value and the use of the CONTINUE card.

The violation of the standard can happen at different levels of the data structure.

31

32 � CHAPTER 6. VERIFICATION

PyFITS’s verification scheme is developed based on such a hierarchical levels. Here
are the 3 levels of the PyFITS verification levels:

1. The HDU List.

2. Each HDU.

3. Each cardimage in the HDU Header.

At each level, there is a verify() method which can be called at anytime. If the
method() is called at the HDL List level, it verifies standard compliance at all three
levels, but a call of verify() at the Card level will only check the compliance of that
Card. Since PyFITS is tolerance when reading an FITS file, no verify() is called on
input. On output, verify() is called with the most restrictive option as default.

These three levels corresponds to the three categories of pyfits objects: HDUList,
any HDU (eg. PrimaryHDU, ImageHDU, etc.), and Card. They are the only objects
having the verify() method. All other objects (e.g. CardList) do not have any verify
method.

6.2 Verification Options

There are 5 options for all verify(option) calls in PyFITS. In addition, they available
for the output verify argument of the following methods: close(), writeto(), and
flush(). In these cases, they are passed to a verify() call within these methods. The
5 options are:

exception

This option will raise an exception, if any FITS standard is violated. This is the
default option for output (i.e. when writeto(), close(), or flush() is called. If a user
wants to overwrite this default on output, the other options listed below can be
used.

ignore

This option will ignore any FITS standard violation. On output, it will write the
HDU List content to the output FITS file, whether or not it is conforming to FITS
standard.

The ignore option is useful in these situations, for example, (1) An input FITS
file with non-standard is read and the user wants to copy or write out after some
modification to an output file. The non-standard will be preserved in such output
file. (2) A user wants to create a non-standard FITS file on purpose, possibly for
testing purpose.

No warning message will be printed out. This is like a silent warn (see below)
option.

6.3. VERIFICATIONS AT DIFFERENT DATA OBJECT LEVELS � 33

fix

This option wil try to fix any FITS standard violations. It is not always possible
to fix such violations. In general, there are two kinds of FITS standard violation:
fixable and not fixable. For example, if a keyword has a floating number with an
exponential notation in lower case ‘e’ (e.g. 1.23e11) instead of the upper case ‘E’
as required by the FITS standard, it s a fixable violation. On the other hand, a
keyword name like ‘P.I.’ is not fixable, since it will not know what to use to replace
the disallowed periods. If a violation is fixable, this option will print out a message
noting it is fixed. If it is not fixable, it will throw an exception.

The principle behind the fixing is do no harm. For example, it is plausible to ‘fix’ a
Card with a keyword name like ‘P.I.’ by deleting it, but PyFITS will not take such
action to hurt the integrity of the data.

Not all fixes may be the “correct” fix, but at least PyFITS will try to make the fix
in such a way that it will not throw off other FITS readers.

silentfix

Same as fix, but will not print out informative messages. This may be useful in
a large script where the user does not want excessive harmless messages. If the
violation is not fixable, it will still throw an exception.

warn

This option is the same as the ignore option but will send warning messages. It will
not try to fix any FITS standard violations whether fixable or not.

6.3 Verifications at Different Data Object Levels

We’ll examine what PyFITS’s verification does at the three different levels:

6.3.1 Verification at HDUList

At the HDU List level, the verification is only for two simple cases:

1. Verify the first HDU in the HDU list is a Primary HDU. This is a fixable case.
The fix is to insert a minimal Primary HDU to the HDU list.

2. Verify second or later HDU in the HDU list is not a Primary HDU. Violation
will not be fixable.

6.3.2 Verification at Each HDU

For each HDU, the mandatory keywords, their locations in the header, and their
values will be verified. Each FITS HDU has a fixed set of required keywords in

34 � CHAPTER 6. VERIFICATION

a fixed order. For example, the Primary HDU’s header must at least have the
following keywords:

SIMPLE = T /

BITPIX = 8 /

NAXIS = 0

If any of the mandatory keyword is missing or in the wrong order, the fix option
will fix them:

>>> print hdu.header # has a ’bad’ header

SIMPLE = T /

NAXIS = 0

BITPIX = 8 /

>>> hdu.verify(’fix’) # fix it

Output verification result:

’BITPIX’ card at the wrong place (card 2). Fixed by moving it to the right

place (card 1).

>>> print h.header # voila!

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0

6.3.3 Verification at Each Card

The lowest level, the Card, also has the most complicated verification possibilities.
Here is a lit of fixable and not fixable Cards:

Fixable Cards:

1. floating numbers with lower case ‘e’ or ‘d’

2. the equal sign is before column 9 in the card image.

3. string value without enclosing quotes.

4. missing equal sign before column 9 in the card image.

5. space between numbers and E or D in floating point values.

6. unparseable values will be “fixed” as a string.

Here are some examples of fixable cards:

>>> print hdu.header.ascardlist()[4:] # has a bunch of fixable cards

FIX1 = 2.1e23

FIX2= 2

FIX3 = string value without quotes

FIX4 2

FIX5 = 2.4 e 03

6.3. VERIFICATIONS AT DIFFERENT DATA OBJECT LEVELS � 35

FIX6 = ’2 10 ’

can still access the values before the fix

>>> hdu.header[5]

2

>>> hdu.header[’fix4’]

2

>>> hdu.header[’fix5’]

2400.0

>>> hdu.verify(’silentfix’)

>>> print hdu.header.ascard[4:]

FIX1 = 2.1E23

FIX2 = 2

FIX3 = ’string value without quotes’

FIX4 = 2

FIX5 = 2.4E03

FIX6 = ’2 10 ’

Unfixable Cards:

1. Illegal characters in keyword name.

We’ll summarize the verification with a “life-cycle” example:

create a PrimaryHDU

>>> h=pyfits.PrimaryHDU()

Try to add an non-standard FITS keyword ’P.I.’ (FITS does no allow ’.’

in the keyword), if using the update() method - doesn’t work!

>>> h.update(’P.I.’,’Hubble’)

ValueError: Illegal keyword name ’P.I.’

Have to do it the hard way (so a user will not do this by accident)

First, create a card image and give verbatim card content (including

the proper spacing, but no need to add the trailing blanks)

>>> c=pyfits.Card().fromstring("P.I. = ’Hubble’")

then append it to the header (must go through the Cardlist)

>>> h.header.ascardlist().append(c)

Now if we try to write to a FITS file, the default output verification

will not take it.

>>> h.writeto(’pi.fits’)

Output verification result:

HDU 0:

Card 4:

Unfixable error: Illegal keyword name ’P.I.’

......

raise VerifyError

VerifyError

Must set the output_verify argument to ’ignore’, to force writing a

non-standard FITS file

>>> h.writeto(’pi.fits’,output_verify=’ignore’)

Now reading a non-standard FITS file

36 � CHAPTER 6. VERIFICATION

pyfits is magnanimous in reading non-standard FITS file

>>> hdus=pyfits.open(’pi.fits’)

>>> print hdus[0].header.ascardlist()

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

P.I. = ’Hubble’

even when you try to access the offending keyword, it does NOT complain

--> hdus[0].header[’p.i.’]

’Hubble’

But if you want to make sure if there is anything wrong/non-standard,

use the verify() method

--> hdus.verify()

Output verification result:

HDU 0:

Card 4:

Unfixable error: Illegal keyword name ’P.I.’

6.3.4 Verification using the FITS Checksum Keyword Convention

The North American FITS committee has reviewed the FITS Checksum Keyword
Convention for possible adoption as a FITS Standard. This convention provides an
integrity check on information contained in FITS HDUs. The convention consists
of two header keyword cards: CHECKSUM and DATASUM. The CHECKSUM
keyword is defined as an ASCII character string whose value forces the 32-bit 1’s
complement checksum accumulated over all the 2880-byte FITS logical records in
the HDU to equal negative zero. The DATASUM keyword is defined as a character
string containing the unsigned integer value of the 32-bit 1’s complement checksum
of the data records in the HDU. Verifying the the accumulated checksum is still
equal to negative zero provides a fairly reliable way to determine that the HDU
has not been modified by subsequent data processing operations or corrupted while
copying or storing the file on physical media.

In order to avoid any impact on performance, by default, pyfits will not verify
HDU checksums when a file is opened or generate checksum values when a file
is written. Infact, CHECKSUM and DATASUM cards are automatically removed
from HDU headers when a file is opened, and any CHECKSUM or DATASUM cards
are stripped from headers when a HDU is written to a file. In order to verify the
checksum values for HDUs when opening a file, the user must supply the checksum
keyword argument in the call to the open convenience function with a value of True.
When this is done, any checksum verification failure will cause a warning to be issued
(via the warnings module). If checksum verification is requested in the open, and
no CHECKSUM or DATASUM cards exist in the HDU header, the file will open
without comment. Similarly, in order to output the CHECKSUM and DATASUM
cards in an HDU header when writing to a file, the user must supply the checksum
keyword argument with a value of True in the call to the writeto function. It is
possible to write only the DATASUM card to the header by supplying the checksum
keyword argument with a value of ‘datasum’.

6.3. VERIFICATIONS AT DIFFERENT DATA OBJECT LEVELS � 37

Here are some examples:

Open the file pix.fits verifying the checksum values for all HDUs

>>> hdul = pyfits.open(’pix.fits’, checksum=True)

Open the file in.fits where checksum verification fails for the

primary HDU

>>> hdul = pyfits.open(’in.fits’, checksum=True)

Warning: Checksum verification failed for HDU #0.

Create file out.fits containing an HDU constructed from data and header

containing both CHECKSUM and DATASUM cards.

>>> pyfits.writeto(’out.fits’, data, header, checksum=True)

Create file out.fits containing all the HDUs in the HDULIST

hdul with each HDU header containing only the DATASUM card

>>> hdul.writeto(’out.fits’, checksum=’datasum’)

Create file out.fits containing the HDU hdu with both CHECKSUM

and DATASUM cards in the header

>>> hdu.writeto(’out.fits’, checksum=True)

Append a new HDU constructed from array data to the end of

the file existingfile.fits with only the appended HDU

containing both CHECKSUM and DATASUM cards.

>>> pyfits.append(’existingfile.fits’, data, checksum=True)

38 � CHAPTER 6. VERIFICATION

Chapter 7

Less Familiar Objects

7.1 ASCII Tables . 39

7.2 Variable Length Array Tables 41

7.3 Random Access Group . 42

7.4 Compressed Image Data 46

In this chapter, we’ll discuss less frequently used FITS data structures. They include
ASCII tables, variable length tables, and random access group FITS files.

7.1 ASCII Tables

FITS standard supports both binary and ASCII tables. In ASCII tables, all the
data are stored in a human readable, text form, so it takes up more space and extra
processing to parse the text for numeric data.

In PyFITS, the user interface for ASCII tables and binary tables are basically the
same, i.e. the data is in the .data attribute and the field() method is used to refer
to the columns and it returns a numpy array. When reading the table, PyFITS will
automatically detect what kind of table it is.

>>> hdus=pyfits.open(’ascii_table.fits’)

>>> hdus[1].data[:1]

FITS_rec(

[(10.123000144958496, 37)],

dtype=[(’a’, ’>f4’),(’b’,’>i4’)])

>>> hdus[1].data.field(’a’)

array([10.12300014, 5.19999981, 15.60999966, 0. ,

345.], dtype=float32)

>>> hdus[1].data.formats

[’E10.4’, ’I5’]

39

40 � CHAPTER 7. LESS FAMILIAR OBJECTS

Note that the formats in the record array refer to the raw data which are ASCII
strings (therefore ‘a11’ and ‘a5’), but the .formats attribute of data retains the
original format specifications (‘E10.4’ and ‘I5’).

7.1.1 Create an ASCII Table

To create an ASCII table from scratch is similar to creating a binary table. The
difference is in the Column definitions. The columns/fields in an ASCII is more
limited than the binary table. It does not allow more than one numerical value in
a cell. Also, it only supports a subset of what allowed in the binary table, namely
character strings, integer, and (single and double precision) floating point numbers.
Boolean and complex numbers are not allowed.

The format syntax (the values of the TFORM keywords) is different from that of a
binary table, they are:

Aw Character string

Iw (Decimal) Integer

Fw.d Single precision real

Ew.d Single precision real, in exponential notation

Dw.d Double precision real, in exponential notation

where, w is the width, and d the number of digits after the decimal point. The
syntax difference between ASCII and binary tables can be confusing. For example,
a field of 3-character string is specified ‘3A’ in binary table but ‘A3’ in ASCII table.

The other difference is the need to specify the table type when using either ColDef()
or new table().

The default value for tbtype is ‘BinTableHDU’.

Define the columns

>>> import numpy as np

>>> import pyfits

>>> a1 = np.array([’abcd’,’def’])

>>> r1 = np.array([11.,12.])

>>> c1 = pyfits.Column(name=’abc’, format=’A3’, array=a1)

>>> c2 = pyfits.Column(name=’def’, format=’E’, array=r1, bscale=2.3, bzero=0.6)

>>> c3 = pyfits.Column(name=’t1’, format=’I’, array=[91,92,93])

Create the table

>>> x = pyfits.ColDefs([c1,c2,c3], tbtype=’TableHDU’)

>>> hdu = pyfits.new_table(x,tbtype=’TableHDU’)

Or, simply,

>>> hdu = pyfits.new_table([c1,c2,c3],tbtype=’TableHDU’)

>>> hdu.writeto(’ascii.fits’)

>>> hdu.data

FITS_rec([(’abcd’, 11.0, 91), (’def’, 12.0, 92), (’’, 0.0, 93)],

dtype=[(’abc’, ’|S3’), (’def’, ’|S14’), (’t1’, ’|S10’)])

7.2. VARIABLE LENGTH ARRAY TABLES � 41

7.2 Variable Length Array Tables

FITS standard also supports variable length array tables. The basic idea is that
sometimes, it is desirable to have tables whose cells in the same field (column)
have the same data type but have different lengths/dimensions. Compared with
the standard table data structure, the variable length table can save storage space
if there is a large dynamic range of data length in different cells.

A variable length array table can have one or more fields (columns) which are
variable length. The rest of the fields (columns) in the same table can still be
regular, fixed-length ones. PyFITS will automatically detect what kind of field it
is reading. No special action is needed from the user. The data type specification
(i.e. the value of the TFORM keyword) uses an extra letter ‘P’ and the format is

rPt(max)

where r is 0, 1, or absent, t is one of the letter code for regular table data type (L,
B, X, I, J, etc. currently, the X format is not supported for variable length array
field in PyFITS), and max is the maximum number of elements. So, for a variable
length field of int32, The corresponding format spec is, eg. ‘PJ(100)’.

>>> f = pyfits.open(’variable_length_table.fits’)

>>> print f[1].header[’tform5’]

1PI(20)

>>> print f[1].data.field(4)[:3]

[array([1], dtype=int16) array([88, 2], dtype=int16)

array([1, 88, 3], dtype=int16)]

The above example shows a variable length array field of data type int16 and its
first row has one element, second row has 2 elements etc. Accessing variable length
fields is almost identical to regular fields, except that operations on the whole filed
are usually not possible. A user has to process the field row by row.

7.2.1 Create Variable Length Array Table

To create a variable length table is almost identical to creating a regular table. The
only difference is in the creation of field definitions which are variable length arrays.
First, the data type specification will need the ‘P’ letter, and secondly, the field data
must be an objects array which is included as part of the numpy module. Here is
an example of creating a table with two fields, one is regular and the other variable
length array.

>>> import pyfits

>>> import numpy as np

>>> c1 = pyfits.Column(name=’var’, format=’PJ()’,

42 � CHAPTER 7. LESS FAMILIAR OBJECTS

... array=np.array([np.array([45, 56]), np.array([11, 12, 13])], dtype=np.object))

>>> c2 = pyfits.Column(name=’xyz’,format=’2I’,array=[[11,3],[12,4]])

the rest is the same as regular table.

Create the table HDU

>>> tbhdu=pyfits.new_table([c1,c2])

>>> tbhdu.data

FITS_rec([(array([45, 56], dtype=int32), array([11, 3], dtype=int16)),

(array([11, 12, 13], dtype=int32), array([12, 4], dtype=int16))],

dtype=[(’var’, ’<i4’, 2), (’xyz’, ’<i2’, 2)])

write to a FITS file

>>> tbhdu.writeto(’var_table.fits’)

>>> hdu = pyfits.open(’var_table.fits’)

Note that heap info is taken care of (PCOUNT) when written to FITS file.

>>> print hdu[1].header.ascardlist()

XTENSION= ’BINTABLE’ / binary table extension

BITPIX = 8 / array data type

NAXIS = 2 / number of array dimensions

NAXIS1 = 12 / length of dimension 1

NAXIS2 = 2 / length of dimension 2

PCOUNT = 20 / number of group parameters

GCOUNT = 1 / number of groups

TFIELDS = 2 / number of table fields

TTYPE1 = ’var ’

TFORM1 = ’PJ(3) ’

TTYPE2 = ’xyz ’

TFORM2 = ’2I ’

7.3 Random Access Group

Another less familiar data structure supported by FITS standard is the random
access group. This convention was established before the binary table extension
was introduced. In most cases its use can now be superseded by the binary table.
It is mostly used in radio interferometry.

Like Primary HDU, a Random Access Group HDU is always the first HDU of a FITS
file. It’s data has one or more groups. Each group may have any number (including
0) of parameters, together with an image. The parameters and the image have the
same data type.

All groups in the same HDU have the same data structure, i.e. same data type
(specified by the keyword BITPIX, as in image HDU), same number of parameters
(specified by PCOUNT), and the same size and shape (specified by NAXIS’s) of
the image data. The number of groups is specified by GCOUNT and the keyword
NAXIS1 is always 0. Thus the total data size for a Random Access Group HDU is

|BITPIX| * GCOUNT * (PCOUNT + NAXIS2*NAXIS3*... *NAXISn)

7.3. RANDOM ACCESS GROUP � 43

7.3.1 Header and Summary

Accessing the header of a Random Access Group HDU is no different from any other
HDU. Just use the .header attribute.

The content of the HDU can similarly be summarized by using the info() method:

>>> f=pyfits.open(’random_group.fits’)

>>> print f[0].header[’groups’]

True

>>> print f[0].header[’gcount’]

7956

>>> print f[0].header[’pcount’]

6

>>> f.info()

Filename: random_group.fits

No. Name Type Cards Dimensions Format

0 AN GroupsHDU 158 (3, 4, 1, 1, 1) Float32 7956 Groups

6 Parameters

7.3.2 Group Parameters

The data part of a random access group HDU is, like other HDU’s, in the .data
attribute. It includes both parameter(s) and image array(s).

The data first lists all the parameters, then the image array, for the specified
group(s). As a reminder, the image data in this file has the shape of (1,1,1,4,3)
in Python or C convention, or (3,4,1,1,1) in IRAF or FORTRAN convention.

To access the parameters, first find out what the parameter names are, with the
.parnames attribute:

get the parameter names

>>> f[0].data.parnames

[’uu--’, ’vv--’, ’ww--’, ’baseline’, ’date’, ’date’]

The group parameter can be accessed by the .par() method. Like the table field()
method, the argument can be either index or name:

Access group parameter by name or by index

>>> print f[0].data.par(0)[99]

-8.1987486677035799e-06

>>> print f[0].data.par(’uu--’)[99]

-8.1987486677035799e-06

44 � CHAPTER 7. LESS FAMILIAR OBJECTS

Note that the parameter name ‘date’ appears twice. This is a feature in the random
access group, and it means to add the values together. Thus:

Duplicate group parameter name ’date’ for 5th and 6th parameters

>>> print f[0].data.par(4)[99]

2445728.0

>>> print f[0].data.par(5)[99]

0.10

When access by name, it adds the values together if the name is shared

by more than one parameter

>>> print f[0].data.par(’date’)[99]

2445728.10

The .par() is a method for either the entire data object or one data item (a group).
So there are two possible ways to get a group parameter for a certain group, this is
similar to the situation in table data (with its field() method):

Access group parameter by selecting the row (group) number last

>>> print f[0].data.par(0)[99]

-8.1987486677035799e-06

Access group parameter by selecting the row (group) number first

>>> print f[0].data[99].par(0)

-8.1987486677035799e-06

On the other hand, to modify a group parameter, we can either assign the new
value directly (if accessing the row/group number last). or use the setpar() method
(if accessing the row/group number first). The method setpar() is also needed for
updating by name if the parameter is shared by more than one parameters:

Update group parameter when selecting the row (group) number last

>>> f[0].data.par(0)[99] = 99.

Update group parameter when selecting the row (group) number first

>>> f[0].data[99].setpar(0, 99.) # or setpar(’uu--’, 99.)

Update group parameter by name when the name is shared by more than

one parameters, the new value must be a tuple of constants or sequences

>>> f[0].data[99].setpar(’date’, (2445729., 0.3))

>>> f[0].data[:3].setpar(’date’, (2445729., [0.11,0.22,0.33]))

>>> f[0].data[:3].par(’date’)

array([2445729.11 , 2445729.22 , 2445729.33000001])

7.3.3 Image Data

The image array of the data portion is accessible by the .data attribute of the data
object. A numpy array is returned:

7.3. RANDOM ACCESS GROUP � 45

image part of the data

>>> print f[0].data.data[99]

array([[[[[12.4308672 , 0.56860745, 3.99993873],

[12.74043655, 0.31398511, 3.99993873],

[0. , 0. , 3.99993873],

[0. , 0. , 3.99993873]]]]], type=float32)

7.3.4 Create a Random Access Group HDU

To create a random access group HDU from scratch, use GroupData() to encapsulate
the data into the group data structure, and use GroupsHDU() to create the HDU
itself:

Create the image arrays. The first dimension is the number of groups.

>>> imdata = numpy.arange(100., shape=(10,1,1,2,5))

Next, create the group parameter data, we’ll have two parameters.

Note that the size of each parameter’s data is also the number of groups.

A parameter’s data can also be a numeric constant.

>>> pdata1 = numpy.arange(10)+0.1

>>> pdata2 = 42

Create the group data object, put parameter names and parameter data

in lists and assigned to their corresponding arguments.

If the data type (bitpix) is not specified, the data type of the image

will be used.

>>> x = pyfits.GroupData(imdata, parnames=[’abc’,’xyz’], \

pardata=[pdata1, pdata2], bitpix=-32)

Now, create the GroupsHDU and write to a FITS file.

>>> hdu = pyfits.GroupsHDU(x)

>>> hdu.writeto(’test_group.fits’)

>>> print hdu.header.ascardlist()[:]

SIMPLE = T / conforms to FITS standard

BITPIX = -32 / array data type

NAXIS = 5 / number of array dimensions

NAXIS1 = 0

NAXIS2 = 5

NAXIS3 = 2

NAXIS4 = 1

NAXIS5 = 1

EXTEND = T

GROUPS = T / has groups

PCOUNT = 2 / number of parameters

GCOUNT = 10 / number of groups

PTYPE1 = ’abc ’

PTYPE2 = ’xyz ’

>>> print hdu.data[:2]

FITS_rec[

(0.10000000149011612, 42.0, array([[[[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]]]], dtype=float32)),

(1.1000000238418579, 42.0, array([[[[10., 11., 12., 13., 14.],

46 � CHAPTER 7. LESS FAMILIAR OBJECTS

[15., 16., 17., 18., 19.]]]], dtype=float32))

]

7.4 Compressed Image Data

A general technique has been developed for storing compressed image data in
FITS binary tables. The principle used in this convention is to first divide the
n-dimensional image into a rectangular grid of sub images or ‘tiles’. Each tile is
then compressed as a continuous block of data, and the resulting compressed byte
stream is stored in a row of a variable length column in a FITS binary table. Sev-
eral commonly used algorithms for compressing image tiles are supported. These
include, Gzip, Rice, IRAF Pixel List (PLIO), and Hcompress.

For more details, reference “A FITS Image Compression Proposal” from:

http://www.adass.org/adass/proceedings/adass99/P2-42/

and “Registered FITS Convention, Tiled Image Compression Convention”:

http://fits.gsfc.nasa.gov/registry/tilecompression.html

Compressed image data is accessed, in pyfits, using the optional “pyfitsComp” mod-
ule contained in a C shared library (pyfitsCompmodule.so). If an attempt is made
to access an HDU containing compressed image data when the pyfitsComp module
is not available, the user is notified of the problem and the HDU is treated like
a standard binary table HDU. This notification will only be made the first time
compressed image data is encountered. In this way, the pyfitsComp module is not
required in order for pyfits to work.

7.4.1 Header and Summary

In pyfits, the header of a compressed image HDU appears to the user like any image
header. The actual header stored in the FITS file is that of a binary table HDU
with a set of special keywords, defined by the convention, to describe the structure
of the compressed image. The conversion between binary table HDU header and
image HDU header is all performed behind the scenes. Since the HDU is actually
a binary table, it may not appear as a primary HDU in a FITS file.

The content of the HDU header may be accessed using the header attribute:

>>> f=pyfits.open(’compressed_image.fits’)

>>> print f[1].header

XTENSION= ’IMAGE ’ / extension type

http://www.adass.org/adass/proceedings/adass99/P2-42/
http://fits.gsfc.nasa.gov/registry/tilecompression.html

7.4. COMPRESSED IMAGE DATA � 47

BITPIX = 16 / array data type

NAXIS = 2 / number of array dimensions

NAXIS1 = 512 / length of data axis

NAXIS2 = 512 / length of data axis

PCOUNT = 0 / number of parameters

GCOUNT = 1 / one data group (required keyword)

EXTNAME = ’COMPRESSED’ / name of this binary table extension

The content of the corresponding binary table HDU may be accessed using the
hidden header attribute. However, all user interface with the HDU header should
be accomplished through the image header (the header attribute).

>>> f=pyfits.open(’compressed_image.fits’)

>>> print f[1]._header

XTENSION= ’BINTABLE’ / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 8 / width of table in bytes

NAXIS2 = 512 / number of rows in table

PCOUNT = 157260 / size of special data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 1 / number of fields in each row

TTYPE1 = ’COMPRESSED_DATA’ / label for field 1

TFORM1 = ’1PB(384)’ / data format of field: variable length array

ZIMAGE = T / extension contains compressed image

ZBITPIX = 16 / data type of original image

ZNAXIS = 2 / dimension of original image

ZNAXIS1 = 512 / length of original image axis

ZNAXIS2 = 512 / length of original image axis

ZTILE1 = 512 / size of tiles to be compressed

ZTILE2 = 1 / size of tiles to be compressed

ZCMPTYPE= ’RICE_1 ’ / compression algorithm

ZNAME1 = ’BLOCKSIZE’ / compression block size

ZVAL1 = 32 / pixels per block

EXTNAME = ’COMPRESSED’ / name of this binary table extension

The content of the HDU can be summarized by using either the info() convenience
function or method:

>>> pyfits.info(’compressed_image.fits’)

Filename: compressed_image.fits

No. Name Type Cards Dimensions Format

0 PRIMARY PrimaryHDU 6 () int16

1 COMPRESSED CompImageHDU 52 (512, 512) int16

>>>

>>> f=pyfits.open(’compressed_image.fits’)

>>> f.info()

Filename: compressed_image.fits

No. Name Type Cards Dimensions Format

0 PRIMARY PrimaryHDU 6 () int16

1 COMPRESSED CompImageHDU 52 (512, 512) int16

>>>

48 � CHAPTER 7. LESS FAMILIAR OBJECTS

7.4.2 Data

As with the header, the data of a compressed image HDU appears to the user as
standard uncompressed image data. The actual data is stored in the fits file as
Binary Table data containing at least one column (COMPRESSED DATA). Each
row of this variable-length column contains the byte stream that was generated as
a result of compressing the corresponding image tile. Several optional columns may
also appear. These include, UNCOMPRESSED DATA to hold the uncompressed
pixel values for tiles that cannot be compressed, ZSCALE and ZZERO to hold the
linear scale factor and zero point offset which may be needed to transform the raw
uncompressed values back to the original image pixel values, and ZBLANK to hold
the integer value used to represent undefined pixels (if any) in the image.

The content of the HDU data may be accessed using the data attribute:

>>> f=pyfits.open(’compressed_image.fits’)

>>> f[1].data

array([[38, 43, 35, ..., 45, 43, 41],

[36, 41, 37, ..., 42, 41, 39],

[38, 45, 37, ..., 42, 35, 43],

...,

[49, 52, 49, ..., 41, 35, 39],

[57, 52, 49, ..., 40, 41, 43],

[53, 57, 57, ..., 39, 35, 45]], dtype=int16)

7.4.3 Create a Compressed Image HDU

To create a compressed image HDU from scratch, simply construct a CompIm-
ageHDU object from an uncompressed image data array and its associated image
header. From there, the HDU can be treated just like any other image HDU.

>>> hdu=pyfits.CompImageHDU(imageData,imageHeader)

>>> hdu.writeto(’compressed_image.fits’)

>>>

The signature for the CompImageHDU initializer method describes the possible
options for constructing a CompImageHDU object:

def __init__(self, data=None, header=None, name=None,

compressionType=’RICE_1’,

tileSize=None,

hcompScale=0.,

hcompSmooth=0

quantizeLevel=16.):

"""data: data of the image

header: header to be associated with the image

7.4. COMPRESSED IMAGE DATA � 49

name: the EXTNAME value; if this value is None, then

the name from the input image header will be

used; if there is no name in the input image

header then the default name ’COMPRESSED_IMAGE’

is used

compressionType: compression algorithm ’RICE_1’, ’PLIO_1’,

’GZIP_1’, ’HCOMPRESS_1’

tileSize: compression tile sizes default treats each row

of image as a tile

hcompScale: HCOMPRESS scale parameter

hcompSmooth: HCOMPRESS smooth parameter

quantizeLevel: floating point quantization level

"""

50 � CHAPTER 7. LESS FAMILIAR OBJECTS

Chapter 8

Miscellaneous Features

8.1 Warning Messages . 51

In this chapter, we’ll describe some of the miscellaneous features of pyfits.

8.1 Warning Messages

Pyfits uses the python warnings module to issue warning messages. The user can
supress the warnings using the python command line argument -W”ignore when
starting an interactive python session. For example:

python -W"ignore"

The user may also use the command line argument when running a python script
as follows:

python -W"ignore" myscript.py

It is also possible to supress warnings from within a python script. For instance
the warnings issued from a single call to the writeto convenience function may be
supressed from within a python script as follows:

import warnings

import pyfits

...

warnings.resetwarnings()

51

52 � CHAPTER 8. MISCELLANEOUS FEATURES

warnings.filterwarnings(’ignore’, category=UserWarning, append=True)

pyfits.writeto(file, im, clobber=True)

warnings.resetwarnings()

warnings.filterwarnings(’always’, category=UserWarning, append=True)

...

Chapter 9

Reference Manual

9.1 Converting a 3-color image (JPG) to separate FITS im-
ages . 53

9.1 Converting a 3-color image (JPG) to separate FITS
images

This is JUST an example, the resulting FITS images are not valid for science analysis

#!/usr/bin/env python

import pyfits

import numpy

import Image

#get the image and color information

image = Image.open(’hs-2009-14-a-web.jpg’)

#image.show()

xsize,ysize=image.size

r,g,b=image.split()

rdata=r.getdata() #data is now an array of length ysize*xsize

gdata=g.getdata()

bdata=b.getdata()

#create numpy arrays

npr=numpy.reshape(rdata,(ysize,xsize))

npg=numpy.reshape(gdata,(ysize,xsize))

npb=numpy.reshape(bdata,(ysize,xsize))

#write out the fits images, the data numbers are still JUST the RGB scalings, dont use for science

53

54 � CHAPTER 9. REFERENCE MANUAL

Figure 9.1: Starting image

Figure 9.2: Red color information

9.1. CONVERTING A 3-COLOR IMAGE (JPG) TO SEPARATE FITS IMAGES � 55

Figure 9.3: Green color information

Figure 9.4: Blue color information

56 � CHAPTER 9. REFERENCE MANUAL

red=pyfits.PrimaryHDU()

red.header.update(’LATOBS’,"32:11:56") #add spurious header info

red.header.update(’LONGOBS’,"110:56")

red.data=npr

red.writeto(’red.fits’)

green=pyfits.PrimaryHDU()

green.header.update(’LATOBS’,"32:11:56")

green.header.update(’LONGOBS’,"110:56")

green.data=npg

green.writeto(’green.fits’)

blue=pyfits.PrimaryHDU()

blue.header.update(’LATOBS’,"32:11:56")

blue.header.update(’LONGOBS’,"110:56")

blue.data=npb

blue.writeto(’blue.fits’)

Chapter 10

Index

10.1 Index . 57

10.1 Index

TBD

57

58 � CHAPTER 10. INDEX

	Introduction
	Installation
	User Support

	Quick Tutorial
	Read and Update Existing FITS Files
	Opening a FITS file
	Working With a FITS Header
	Working With Image Data
	Working With Table Data
	Save File Changes

	Create New FITS File
	Create New Image File
	Create New Table File
	Convenience Functions

	FITS Headers
	Header of an HDU
	The Header Attribute
	Value Access and Update
	COMMENT, HISTORY, and Blank Keywords

	Card Images
	Card List
	CONTINUE Cards
	HIERARCH Cards

	Image Data
	Image Data as an Array
	Scaled Data
	Reading Scaled Image Data
	Writing Scaled Image Data

	Data Section

	Table Data
	Table Data as a Record Array
	What is a Record Array?
	Metadata of a Table
	Reading a FITS Table

	Table Operations
	Select Records in a Table
	Merge Tables
	Appending Tables

	Scaled Data in Tables
	Create a FITS Table
	Column Creation

	Verification
	FITS Standard
	Verification Options
	Verifications at Different Data Object Levels
	Verification at HDUList
	Verification at Each HDU
	Verification at Each Card
	Verification using the FITS Checksum Keyword Convention

	Less Familiar Objects
	ASCII Tables
	Create an ASCII Table

	Variable Length Array Tables
	Create Variable Length Array Table

	Random Access Group
	Header and Summary
	 Group Parameters
	 Image Data
	Create a Random Access Group HDU

	Compressed Image Data
	Header and Summary
	Data
	Create a Compressed Image HDU

	Miscellaneous Features
	Warning Messages

	Reference Manual
	Converting a 3-color image (JPG) to separate FITS images

	Index
	Index

